Show that the square of any positive integer is of the form 3p,3p+1,3p+2
QGP:
Well, you need to correct the question; there shouldn't be 3p+2
Answers
Answered by
1
Suppose the positive integer is k.
Then By Division Algorithm,
k=3q or k=3q+1 or k=3q+2 where q∈Z
CASE 1:
k=3q
∴k²=(3q)²
∴k²=9q²
∴k²=3*3 q²
∴k²=3p where p=3q²
CASE 2:
k=3q+1
∴k²=(3q+1)²
=9q² + 6q + 1
=3(3q²+2q) + 1
∴k²=3p+1 where p=3q²+2q
CASE 3:
k=3q+2
∴k²=(3q+2)²
=9q² + 12q + 4
=9q² + 12q + 3 + 1
=3(3q² + 4q + 1) + 1
∴k²=3p+1 where p=3q²+4q+1
Thus, square of any positive integer is of the form 3p or 3p+1.
Then By Division Algorithm,
k=3q or k=3q+1 or k=3q+2 where q∈Z
CASE 1:
k=3q
∴k²=(3q)²
∴k²=9q²
∴k²=3*3 q²
∴k²=3p where p=3q²
CASE 2:
k=3q+1
∴k²=(3q+1)²
=9q² + 6q + 1
=3(3q²+2q) + 1
∴k²=3p+1 where p=3q²+2q
CASE 3:
k=3q+2
∴k²=(3q+2)²
=9q² + 12q + 4
=9q² + 12q + 3 + 1
=3(3q² + 4q + 1) + 1
∴k²=3p+1 where p=3q²+4q+1
Thus, square of any positive integer is of the form 3p or 3p+1.
Similar questions