Math, asked by patelriya, 1 year ago

show that the square of any positive integer is the form 4m or 4m+1 for some integer m.​

Answers

Answered by MrityunjaySharmaa
8

Answer:

let a= any positive integer

b= 4

r= 0,1,2,3

According to Euclid's division lemmma: a=bq+r

we have,

a= 4q, 4q+1, 4q+2, 4q+3

Case 1: a= 4q

Squaring them we get,

a =(4q)²

a = 16q²

a = 4(4q)

a = 4m

Case 2: a= 4q+1

Squaring them we get,

a =(4q+1)²

a =(4q)² + (1)² + 8q

a =16q² + 8q + 1

a = 4(4q² + 2) + 1

a = 4m+1

Case 3: a= 4q+2

Squaring them we get,

a =(4q+2)²

a =(4q)² + (2)² + 16q

a =16q² + 16q + 4

a = 4(4q² + 4q + 1)

a = 4m

Case 4: a= 4q+3

Squaring them we get,

a =(4q+3)²

a =(4q)² + (3)² + 24q

a =16q² + 24q + 9

a =16q² + 24q + 8 + 1

a = 4(4q² + 8q + 2) + 1

a = 4m+1

therefore, square of any positive integer is in the form 4m or 4m+1

Similar questions