Math, asked by Sristityagi8916, 1 year ago

Show that the straight lines 3 x minus 5 y + 7 is equal to zero and 15 x + 9 y + 4 is equal to zero are perpendicular

Answers

Answered by MaheswariS
3

\textbf{Concept:}

\text{Slope of the straight line ax+by=c=0 is $\bf\frac{-a}{b}$}

\text{Given lines are}

\textbf{3x-5y+7=0 and 15x+9y=4=0}

\text{Slope of 3x-5y+7=0 is }m_1=\frac{-3}{-5}=\frac{3}{5}

\text{Slope of 15x+9y+4=0 is }m_2=\frac{-15}{9}=\frac{-5}{3}

\text{Now,}

m_1{\times}m_2

=\frac{3}{5}{\times}\frac{(-5)}{3}

=-1

\therefore\textbf{The given lines are perpendicular}

Similar questions