Math, asked by Ashutoshsingh468847, 11 months ago

Show that the sum of an A.P.whose first term is a, the second term is b and the
last term is c, is equal to (a+c)(b+c-2a)/2(b-a).​

Answers

Answered by ihrishi
0

Step-by-step explanation:

Given:

t_1 = a, \: t_2 = b, \: t_n = c \\  \therefore \: d  = b - a \\  \because \:  t_n = a + (n - 1)d \\  \therefore  \: c =  a + (n - 1)(b - a) \\ \therefore  \: c  -   a  =  (n - 1)(b - a) \\  \frac{c - a}{b - a}  = n - 1 \\  \implies \: n = \frac{c - a}{b - a} + 1 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{c - a + b - a}{b - a}  \\ \implies  \fbox {\: n = \frac{b + c - 2a}{b - a}} \\ now \: sum \: of \: AP \\S_n = \frac{n}{2}(a+t_n)\\</p><p>=  \frac{\frac{(b + c - 2a)}{(b - a)}}{2}(a+c)\\</p><p>\fbox{\therefore S_n= \frac{(a+c)(b + c - 2a)}{2(b - a)}} \\

Thus proved.

Similar questions