Show that the sum of the 99th powers of the roots of the equation x^5=1 is zero
rajputrockey606:
134#$££=|||*+\+\|+|*\*|=7245
Answers
Answered by
4
Step-by-step explanation:
Given, x7 - 1 = 0
=> x7 = 1
=> x = (1)1/7
=> x = (cos 0 + i*sin 0)1/7
=> x = cos(2π/7) + i*sin (2π/7)
So, 7 root of unity of 1, a, a2 ,a3 ,a4 ,a5 ,a6
Where a = cos(2π/7) + i*sin (2π/7)
Now,
199 + a99 + (a2 )99 + (a3 )99 + (a4 )99 + (a5 )99 + (a6 )99
= 1 + a99 + a2
(
99) + a3
(
99) + a4
(
99) + a5
(
99) + a6
(
99)
= 1*{1 -(a99 )7 }/(1 - a99 )
= {1 -(cos(2π/7) + i*sin (2π/7)99
(
7) }/{1 - cos(2π/7) + i*sin (2π/7)99 }
= {1 - cos 2π*99 - i*sin 2π*99}/{1 - cos(198π/7) + i*sin (198π/7) }
= (1 - 1 - i*0)/{1 - cos(198π/7) + i*sin (198π/7) }
= 0
So, the sum of 99th power of the roots of the equation x7 - 1 = 0 is zero.
Answered by
0
12));()(;!)::&;&,&/@&:8:8:8;9:/8;8;8/8;98337(8/8;8;928(828;8:838(8&38;88;8;8289329(882;9;98;9:8:&(8/&;8/&9/&(8:8(8:&2&;9838;8:838(828(98:8(9/&/8;9(9/&28;9:&28;9;&/&;;9(&/&(8(8:&&(9:&:8;9;829;930205927495828105948
Similar questions