Math, asked by Ankwalker, 10 months ago

Show that the sum of three medians of triangle is less then is perimeter ​

Answers

Answered by Defsoul
0

Answer:

Step-by-step explanation:

Let ABC be the triangle and D. E and F are midpoints of BC, CA and AB respectively.

Recall that the sum of two sides of a triangle is greater than twice the median bisecting the third side,

Hence in ΔABD, AD is a median

⇒ AB + AC > 2(AD)

Similarly, we get

BC + AC > 2CF

BC + AB > 2BE

On adding the above equations, we get

(AB + AC) + (BC + AC) + (BC + AB )> 2AD + 2CD + 2BE

2(AB + BC + AC) > 2(AD + BE + CF)

∴ AB + BC + AC > AD + BE + CF

Similar questions