Physics, asked by Ullas229, 3 months ago

Show that the total energy of the particle is SHM is constant at any point on it's path​

Answers

Answered by BrainlyTwinklingstar
4

Answer

We know that,

\sf Potential \: energy = \dfrac{1}{2} m \omega {}^{2}{y}^{2}

\sf Kinetic \: energy = \dfrac{1}{2} m \omega {}^{2} ({A}^{2} - {y}^{2})

Case 1 :-

When the body is at displacement y

The total energy is given by,

\sf \dashrightarrow TE = PE + KE

\sf \dashrightarrow TE = \dfrac{1}{2} m \omega {}^{2} {y}^{2} + \dfrac{1}{2} m \omega {}^{2} ({a}^{2} - {y}^{2})

\sf \dashrightarrow TE = \dfrac{1}{2} m \omega {}^{2} \bigg( {y}^{2} + ( {A}^{2} - {y}^{2}) \bigg)

\sf \dashrightarrow \boxed{\sf TE = \dfrac{1}{2} m \omega {}^{2} {A}^{2}} \: --- (i)

Case 2 :-

When the body is at mean position y = 0

The total energy is given by,

\sf \dashrightarrow TE = PE + KE

\sf PE = \dfrac{1}{2} m \omega {}^{2} ({y}^{2})

\sf PE = \dfrac{1}{2} m \omega {}^{2} (0)

\sf PE = 0

\sf KE = \dfrac{1}{2} m \omega {}^{2} ({A}^{2} - {y}^{2})

\sf KE = \dfrac{1}{2} m \omega {}^{2} ({A}^{2} - 0)

\sf KE = \dfrac{1}{2} m \omega {}^{2} {A}^{2}

By substituting the values of KE and PE,

\sf \dashrightarrow TE = 0 + \dfrac{1}{2} m \omega {}^{2} {A}^{2}

\sf \dashrightarrow \boxed{\sf TE = \dfrac{1}{2} m \omega {}^{2} {A}^{2}} \: --- (ii)

Case 3. -

When the displacement is equal to 'A'

The total energy is given by,

\sf TE = PE + KE

\sf PE = \dfrac{1}{2} m \omega {}^{2} {y}^{2}

\sf PE = \dfrac{1}{2} m \omega {}^{2} {A}^{2}

\sf KE = \dfrac{1}{2} m \omega {}^{2} ({A}^{2} - {y}^{2})

\sf KE = \dfrac{1}{2} m \omega {}^{2} ({A}^{2} - {A}^{2})

\sf KE = \dfrac{1}{2} m \omega {}^{2} (B)

\sf KE = 0

By substituting the values of KE and PE,

\sf \dashrightarrow TE = \dfrac{1}{2} m \omega {}^{2} {A}^{2} + 0

\sf \dashrightarrow \boxed{\sf TE = \dfrac{1}{2} \omega {}^{2} {A}^{2}} \: --- (iii)

From equation (i), (ii) and (iii) total energy is, \sf \dfrac{1}{2} m \omega {}^{2} {A}^{2} = constant

Thus the total energy of an object under SHM is constant at any point on it's path.

Similar questions