Math, asked by TGMAIN, 18 days ago


Show that the value of
tanx/tan 3x, wherever defined, never lies between 1/3 and 3.

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\dfrac{tanx}{tan3x}

Let assume that

\rm :\longmapsto\:y = \dfrac{tanx}{tan3x}

We know that

\rm :\longmapsto\:tan3x = \dfrac{3tanx -  {tan}^{3}x}{1 - 3 {tan}^{2}x}

So, on substituting this value, we get

\rm :\longmapsto\:y = \dfrac{tanx}{\dfrac{3tanx -  {tan}^{3}x}{1 -  {3tan}^{2} x} }

\rm :\longmapsto\:y = \dfrac{tanx(1 -  {3tan}^{2} x)}{tanx(3 -  {tan}^{2}x)}

\rm :\longmapsto\:y = \dfrac{1 -  {3tan}^{2} x}{3 -  {tan}^{2}x}

\rm :\longmapsto\:3y - y {tan}^{2}x = 1 -  {3tan}^{2}x

\rm :\longmapsto\:3 {tan}^{2}x - y {tan}^{2}x = 1 -  3y

\rm :\longmapsto\:y{tan}^{2}x - 3 {tan}^{2}x = 3y  - 1

\rm :\longmapsto\:{tan}^{2}x(y - 3 ) = 3y  - 1

\rm :\longmapsto\: {tan}^{2}x = \dfrac{3y - 1}{y - 3}

\bf\implies \:tanx =  \sqrt{\dfrac{3y - 1}{y - 3} }

Now, tanx is defined iff

\rm :\longmapsto\:\dfrac{3y - 1}{y - 3} \geqslant 0 \:  \: and \: y \:  \ne \: 3

\rm :\longmapsto\:\dfrac{(3y - 1)(y - 3)}{(y - 3)^{2} } \geqslant 0 \:  \: and \: y \:  \ne \: 3

\rm :\longmapsto\:(3y - 1)(y - 3)\geqslant 0 \:  \: and \: y \:  \ne \: 3

\bf\implies \:y \leqslant \dfrac{1}{3}  \:  \: or \:  \: y > 3

\bf\implies \:\dfrac{tanx}{tan3x}  \leqslant \dfrac{1}{3}  \:   \:  \: \: or \:   \: \: \dfrac{tanx}{tan3x} > 3

Hence, Proved

Additional Information :-

If a and b are two positive real numbers such that a < b, then

\boxed{ \sf{ \:(x - a)(x - b) &lt; 0 \: \rm \implies\:a &lt; x &lt; b}}

\boxed{ \sf{ \:(x - a)(x - b)  \leqslant  0 \: \rm \implies\:a  \leqslant  x  \leqslant  b}}

\boxed{ \sf{ \:(x - a)(x - b)  &gt;  0 \: \rm \implies\: x &lt; a \:  \: or \: x  &gt; b}}

\boxed{ \sf{ \:(x - a)(x - b)   \geqslant   0 \: \rm \implies\: x  \leqslant  a \:  \: or \: x   \geqslant  b}}

\boxed{ \sf{ \: |x| &lt; y\rm  \: \implies\: - y &lt; x &lt; y}}

\boxed{ \sf{ \: |x|  \leqslant  y\rm  \: \implies\: - y  \leqslant x  \leqslant  y}}

\boxed{ \sf{ \: |x|  &gt;  y\rm  \: \implies\:   x &lt;  - y \:  \: or \:  \: x &gt; y}}

\boxed{ \sf{ \: |x|   \geqslant   y\rm  \: \implies\:   x  \leqslant   - y \:  \: or \:  \: x  \geqslant  y}}

Similar questions