show that the volume of the frustum 13/27 pi r²h
Answers
Answered by
1
It is given that in the frustum ABB'A' OA = r, OO' =h and OB' = √(h2 + r2 /9 )
In right triangle OO'B we get
O'B'2 = OB'2 - OO'2O'B'2
=h2 + r2 /9 - h2
O'B'2 = r2 /9
O'B' = r / 3
∴Volume of the frustum = (1/3) πh[ r2 + r2 /9 + r×(r/3)]
V = (1/3) πh[ r2 + r2 /9 + r2 / 3]
V = (1/3) πh[13 r2 ]
V = (13 / 27) πr2h.
In right triangle OO'B we get
O'B'2 = OB'2 - OO'2O'B'2
=h2 + r2 /9 - h2
O'B'2 = r2 /9
O'B' = r / 3
∴Volume of the frustum = (1/3) πh[ r2 + r2 /9 + r×(r/3)]
V = (1/3) πh[ r2 + r2 /9 + r2 / 3]
V = (1/3) πh[13 r2 ]
V = (13 / 27) πr2h.
Attachments:
faik79:
If it's helpful mark as brainliest.
Similar questions