Math, asked by Anonymous, 11 months ago

Show that there is no positive integer 'n' for which \tt{( \sqrt{n - 1}  +  \sqrt{n + 1} )} is rational.

\bf{Class\:X}
\bf{No\:spam\:answers\:please!}

Answers

Answered by Anonymous
4

For √(n-1) to be rational

n-1 = t^2 (t is an integer)

n= t^2 + 1

Now for √n+1 to be rational

n + 1 = L^2 ( L is integer)

t^2 +1 +1 = L^2

t^2 +2 = L^2

2 = L^2 - t^2

2 = (L-T)( L+T)

Now L And T both are integers

So L-T and L+T are also integers

If L- T = 1 or 2

then L+T can't be 2 or 1

SO IT'S ALWAYS IRRATIONAL

Answered by Anonymous
11
\mathfrak{\huge{Hi!}}

Let's assume \sf{( \sqrt{n - 1} + \sqrt{n + 1} )} to be a rational number. Thus :-

\sf{(\sqrt{n - 1} + \sqrt{n + 1} )= \frac{p}{q}}\\, where p and q are co-primes and q ><0 ...(1)

Do the reciprocal of this equation :

=》 \sf{\frac{1}{( \sqrt{n - 1} + \sqrt{n + 1} )} = \frac{q}{p}}\\

Rationalise the Left hand side of this equation :

=》 \sf{\tiny{\frac{1}{ \sqrt{n + 1} + \sqrt{n - 1} } \times \frac{\sqrt{n + 1} - \sqrt{n - 1}}{\sqrt{ n + 1} - \sqrt{n -1}} = \frac{q}{p}}}\\

=》 \sf{\frac{\sqrt{n + 1} - \sqrt{ n - 1}}{n + 1 - n + 1} = \frac{q}{p}}\\

=》 \sf{( \sqrt{n + 1} - \sqrt{n - 1} ) = \frac{2q}{p}}\\ ...(2)

Adding and subtracting (1) and (2) :

Adding first :

=》 \sf{\tiny{\sqrt{n - 1} + \sqrt{n + 1} + \sqrt{n + 1} - \sqrt{n - 1}= \frac{p}{q} + \frac{2q}{p}}}\\

=》 \sf{ \sqrt{n + 1} = \frac{p^{2} + 2q^{2}}{qp}}\\

Subtracting now :

=》 \sf{\tiny{\sqrt{n - 1} + \sqrt{n + 1} - \sqrt{n + 1} + \sqrt{n - 1}= \frac{p}{q} - \frac{2q}{p}}}\\

=》 \sf{ \sqrt{n - 1} = \frac{p^{2} - 2q^{2}}{qp}}\\

\tt{\therefore Both \: \sqrt{n + 1}\: and \: \sqrt{n - 1}\: are\:rationals.}

\tt{\therefore Both\: (n + 1)\: and \: (n - 1)\: should \: be \: perfect\: squares.}

Difference between ( n + 1 ) and ( n - 1 ) = n + 1 - n + 1 = 2

\tt{\therefore These\:numbers\:aren't \:perfect\:squares.} This is because for any two perfect squares, the minimum difference is 3.

\tt{\therefore These \:numbers\:aren't \:rationals.}

\bf{\huge{Hence\:Proved!}}

Anonymous: Oh
Anonymous: Wait @Srishti01
Anonymous: It's not copied Mr. Dhruv !
Anonymous: Message me Mr. Dhruv
Similar questions