Math, asked by kavyakalal72, 10 months ago

show that this will equal to one

Attachments:

Answers

Answered by rishu6845
7

Concept used ---->

1) a = a a

2)

a⁻ᵐ = 1 /aᵐ

Solution----> LHS

 =  \dfrac{1}{1 +  {x}^{b - a}  +  {x}^{c - a} } +  \dfrac{1}{1 +  {x}^{a - b} +  {x}^{c - b}  } +  \dfrac{1}{1 +  {x}^{b - c} +  {x}^{a - c}  }

 =  \dfrac{1}{1 +  {x}^{b}  \: {x}^{ - a} +  {x}^{c} \:  {x}^{ - a}    } +  \dfrac{1}{1 +  {x}^{a}  \: {x}^{ - b} +  {x}^{c}  \:  {x}^{ - b }   } +  \dfrac{1}{1 +  {x}^{b} \:  {x}^{ - c} +  {x}^{a} \:  {x}^{ - c}    }

 =  \dfrac{1}{1 +  \dfrac{ {x}^{b} }{ {x}^{a} } +  \dfrac{ {x}^{c} }{ {x}^{a} }  }  \:  +  \dfrac{1}{1 +  \dfrac{ {x}^{a} }{ {x}^{b} } +  \dfrac{ {x}^{c} }{ {x}^{b} }  } +  \dfrac{1}{1 +  \dfrac{ {x}^{b} }{ {x}^{c} } \:  + \dfrac{ {x}^{a} }{ {x}^{c} }    }

 =  \dfrac{1}{ \dfrac{ {x}^{a} \:  +  {x}^{b} \:  +  {x}^{c}   }{ {x}^{a} } } +  \dfrac{1}{ \dfrac{ {x}^{b} \:  +  {x}^{a } \:  +  {x}^{c}   }{ {x}^{b} } } +   \dfrac{1}{ \dfrac{ {x}^{c} +  {x}^{b} +  {x}^{a}   }{ {x}^{c} } }

 =  \dfrac{ {x}^{a} }{ {x}^{a} +  {x}^{b} +  {x}^{c}   }  \:  +  \dfrac{ {x}^{b} }{ {x}^{a}   + {x}^{b} +  {x}^{c}    }  +  \dfrac{ {x}^{c} }{ {x}^{a} +  {x}^{b} +  {x}^{c}   }

 =  \dfrac{ {x}^{a} +  {x}^{b}  +  {x}^{c}  }{ {x}^{a} +  {x}^{b}  +  {x}^{c}  }

 numerator \: and \: denomiator \: cancel \: out \: each \: other

 = 1

 = <strong><em>R</em></strong><strong><em>H</em></strong><strong><em>S</em></strong>

Similar questions