Math, asked by jathin735, 7 months ago

Show that two pairs of lines 3x2 + 8xy - 3y2 = 0 and 3x2 + 8xy - 3y2 + 2x - 4y -1= 0 forms a square ​

Answers

Answered by amitnrw
17

Given :  two pair of lines 3x² + 8xy – 3y²   = 0  and 3x² + 8xy – 3y² + 2x – 4y - 1 = 0

To Find : Show these lines form a square

Solution:

3x² + 8xy – 3y²   = 0

=> 3x² + 9xy -xy – 3y²   = 0

=> 3x(x + 3y) - y(x + 3y) = 0

=> (3x - y)(x + 3y) = 0

3x - y = 0

x + 3y = 0

3x² + 8xy – 3y² + 2x – 4y - 1 = 0

=> (3x - y  - 1) (x  + 3y  + 1)  = 0

3x - y  - 1 = 0

x  + 3y  + 1 = 0

3x - y = 0  and x + 3y = 0

=> ( 0, 0)

3x - y  - 1 = 0  x  + 3y  + 1 = 0

(0.2 , -0.4)

3x - y = 0   and x  + 3y  + 1 = 0

=> (-0.1 , -0.3)

x + 3y = 0  and  3x - y  - 1 = 0

(0.3 , -0.1)

3x - y = 0 , x + 3y = 0    Slopes are  3 ,  -1/3  ( hence perpendicular )

3x - y  - 1 = 0 , x  + 3y  + 1 = 0 Slopes are  3 ,  -1/3  ( hence perpendicular )

( 0, 0) ,  (0.3 , -0.1) , (0.2 , -0.4) ,  (-0.1 , -0.3)

Using distance formula

Each side length = √0.1

Hence it forms a square

Learn More:

if the pair of linear equations 2x+5y=7 and 4x+3y=b is consistent the ...

brainly.in/question/14932663

35.Which of the following pairs of equations are consistent?a. x+y ...

brainly.in/question/20731593

Attachments:
Answered by anjalimandapati555
0

  • fjczdzg.
  • fudh
  • uhhggjcxhfjg
Similar questions