Show that u=yx-yz,v=x-2y-3z,w=x+2y-3z are dependent
Answers
Answered by
0
Step-by-step explanation:
If
u ≡
x + y
x
and v ≡
x − y
y
,
then
u ≡ 1 +
x
y
and v ≡
x
y
− 1,
which gives
(u − 1)(v + 1) ≡
x
y
.
y
x
≡ 1.
Hence,
u ≡ 1 +
1
v + 1
and v ≡
1
u − 1
− 1.
2. If
u ≡ x + y and v ≡ x
2 + 2xy + y
2
,
then
v ≡ u
2
and u ≡ ±√
v.
If u and v are not connected by an identical relationship, they are said to be “independent
functions”.
Similar questions