Math, asked by shindesargam9, 4 months ago

Show that vector a= 2i + 5j - 6k and vector b= i+5/2j-3k arr parallel

Answers

Answered by sahilsing
0

Answer:

Vectors \vec{a}=2i+5j-6k

a

=2i+5j−6k and \vec{b}=i+\frac{5}{2}j-3k

b

=i+

2

5

j−3k

To find : Show that vectors are parallel?

Solution :

When two vectors are parallel then \vec{u}\cdot\vec{v}=|a||b|

u

v

=∣a∣∣b∣

So we find the dot product of vectors,

\vec{a}\cdot\vec{b}=(2i+5j-6k)\cdot(i+\frac{5}{2}j-3k)

a

b

=(2i+5j−6k)⋅(i+

2

5

j−3k)

\vec{a}\cdot\vec{b}=2\times 1+5\times\frac{5}{2}+(-6)\times (-3)

a

b

=2×1+5×

2

5

+(−6)×(−3)

\vec{a}\cdot\vec{b}=2+\frac{25}{2}+18

a

b

=2+

2

25

+18

\vec{a}\cdot\vec{b}=20+\frac{25}{2}

a

b

=20+

2

25

\vec{a}\cdot\vec{b}=\frac{40+25}{2}

a

b

=

2

40+25

\vec{a}\cdot\vec{b}=\frac{65}{2}

a

b

=

2

65

...(1)

Now, we find the magnitude,

\vec{a}=2i+5j-6k

a

=2i+5j−6k

|\vec{a}|=\sqrt{2^2+5^2+(-6)^2}∣

a

∣=

2

2

+5

2

+(−6)

2

|\vec{a}|=\sqrt{4+25+36}∣

a

∣=

4+25+36

|\vec{a}|=\sqrt{65}∣

a

∣=

65

\vec{b}=i+\frac{5}{2}j-3k

b

=i+

2

5

j−3k

|\vec{b}|=\sqrt{1^2+(\frac{5}{2})^2+(-3)^2}∣

b

∣=

1

2

+(

2

5

)

2

+(−3)

2

|\vec{b}|=\sqrt{1+\frac{25}{4}+9}∣

b

∣=

1+

4

25

+9

|\vec{b}|=\sqrt{\frac{4+25+36}{4}}∣

b

∣=

4

4+25+36

|\vec{b}|=\sqrt{\frac{65}{4}}∣

b

∣=

4

65

|\vec{b}|=\frac{\sqrt{65}}{2}∣

b

∣=

2

65

So, |a||b|=\sqrt{65}\times \frac{\sqrt{65}}{2}∣a∣∣b∣=

65

×

2

65

|a||b|=\frac{65}{2}∣a∣∣b∣=

2

65

...(2)

Since, (1) and (2) are equal so the vectors are parallel.

Similar questions