Math, asked by Hermione23F, 3 months ago

show that {( x-¹+y-¹/x-¹) + (x-¹-y-¹/x-¹)} = x²+y²/xy​

Answers

Answered by cshakti56
0

Step-by-step explanation:

see it help you get it now

Attachments:
Answered by ItzDinu
18

\Huge\bf\maltese{\underline{\green{Answer°᭄}}}\maltese

\implies\large\bf{\underline{\red{VERIFIED✔}}}

LHS, \\  =  >   \frac{{x}^{ - 1} +  {y}^{ - 1}  }{ {x}^{ - 1} }  +  \frac{{x}^{ - 1}  -   {y}^{ - 1}  }{ {y}^{ - 1} }  \\  \\  =  >  \frac{ \frac{1}{x} +  \frac{1}{y}  }{ \frac{1}{x} } + \frac{ \frac{1}{x}  -  \frac{1}{y}  }{ \frac{1}{y} }  \\  \\  =  >  \frac{ \frac{x + y}{xy} }{ \frac{1}{x} }   +  \frac{ \frac{y  - x}{xy}  }{ \frac{1}{y} } \\  \\  =  >  \frac{x + y}{xy }  \times  \frac{x}{1}  +  \frac{y - x}{xy} \times  \frac{y}{1} \\  \\  =  >  \frac{x + y}{y}  +  \frac{y - x}{x}   \\  \\  =  >  \frac{x(x + y) + y(y - x)}{xy}  \\  \\  =  >  \frac{ {x}^{2 }  + xy +  {y}^{2}  - yx}{xy}  \\  \\  =  > \frac{ {x}^{2} +  {y}^{2}  }{xy}  \\  \\  =  > RHS.

 \boxed{I \:Hope\: it's \:Helpful}

Similar questions