Math, asked by amanpatel6482, 11 months ago

Show that , x-1+y-1\x-1+x-1-y-1\x-1=x2+y2\xy

Answers

Answered by amitnrw
79

Given : (x⁻¹  + y⁻¹)/x⁻¹    + (x⁻¹  - y⁻¹)/y⁻¹  = (x² + y²)/xy

To find : Prove the equality

Solution:

Correction in Question :   other wise LHS = 2

(x⁻¹  + y⁻¹)/x⁻¹    + (x⁻¹  - y⁻¹)/y⁻¹  = (x² + y²)/xy

LHS

= (x⁻¹  + y⁻¹)/x⁻¹    + (x⁻¹  - y⁻¹)/y⁻¹

= (1/x + 1/y)/(1/x)  + (1/x - 1/y)/(1/y)

= x(y + x) /xy   +  y(y - x)/xy

= (1/xy) ( xy + x²   + y²  - yx)

= (1/xy) ( x² + y²)

=  (x² + y²)/xy

= RHS

QED

Hence Proved

(x⁻¹  + y⁻¹)/x⁻¹    + (x⁻¹  - y⁻¹)/y⁻¹  = (x² + y²)/xy

Learn more:

What is the simplest value of (x^-1+y^-1)^-1.

https://brainly.in/question/13944776

x2+y2\xy

https://brainly.in/question/10816589

tan⁻¹ (xy) - tan⁻¹ x-yx+y का मान है: (A)π/2 है (B) π/3 है (C) π/4 ...

https://brainly.in/question/16556819

Answered by bharathparasad577
2

Answer:

Concept:

For the equation to be valid, the numerical value of the expression on the left side of the equation must be equal to the numerical value of the variable on the right side of the equation under all conditions.

Step-by-step explanation:

Given:

\left(x^{-1}+y^{-1}\right) / x^{-1}+\left(x^{-1}-y^{-1}\right) / y^{-1}=\left(x^{2}+y^{2}\right) / x y

Find:

Prove that LHS is equal to RHS

Solution:

Taking LHS

$$\begin{aligned}&=\left(x^{-1}+y^{-1}\right) / x^{-1}+\left(x^{-1}-y^{-1}\right) / y^{-1} \\&=(1 / x+1 / y) /(1 / x)+(1 / x-1 / y) /(1 / y) \\&=x(y+x) / x y+y(y-x) / x y \\&=(1 / x y)\left(x y+x^{2}+y^{2}-y x\right) \\&=(1 / x y)\left(x^{2}+y^{2}\right) \\&=\left(x^{2}+y^{2}\right) / x y \\&=R H S\end{aligned}$$

Hence proved.

#SPJ2

Similar questions