Math, asked by vinitapandey757, 2 months ago

show that (x-3) is a factor of the polynomial xcube
show \: that \: {x - 3} \: is \: a \: factor \: of \: the \: polynomil \: xcube - 3 {x }^{2}  + 4x - 12
-3xsq+4x-12.​

Answers

Answered by Anonymous
15

Answer:

\mathtt\green{SOLUTION:-}

 \mathtt{x  - 3 = 0}

\mathtt{x = 0 + 3}

 \mathtt{x = 3}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\mathtt{NOW \:  SUBSTITUTE \:  THE  \: VALUE  \: OF  \: X}

 \mathtt \green{ =  {x}^{3} -  {3x}^{2} + 4x - 12  }

 \mathtt \green{ =  {3}^{3} - 3 \times  {3}^{2}  + 4 \times 3 - 12 }

 \mathtt \green{ = 27 - 27 + 12 - 12}

 \mathtt \green{ = 0}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\mathtt{YES, X-3 \:  IS  \: THE \:  FACTOR  \: OF  \: THIS \:  POLYNOMIAL}

Answered by ITZSARCATICVAMPIRE
1

\red{\large\mathfrak {Question}}

 \sf \: Show \: that \:  \: {x - 3} \: is \: a \: factor \: of \: the \: polynomial \:  {x}^{3}  - 3 {x }^{2} + 4x - 12

\green{\large\mathfrak {solution}}

Let p(x) = x³ - 3x² + 4x - 12

and g(x) = x-3

 \sf \: (x -  \alpha ) = (x - ( - 3))

⇒ \sf \: (x -  \alpha ) = (x + 3)

A/q remainder theorum :—

 \sf \: if \: g(x) \: is \: a \: factor \: of \: p(x) \: then \:p ( - \ alpha ) = 0

⇒ p(3) = (3)³ - 3(3)² + 4(3) - 12

∴ p(3)=0

= 27-3×9+12-12

= 27-27+12-12

= 0

\bold{\boxed{\blue{∵p(x) = 0 }}}

Hence proved that g(x) is a factor of p(x).

\pink{\large\mathfrak { \:  \:  \:  \: !! \: hope \: it \: helps \: you \:!!}}

Similar questions