Math, asked by rohtashsharma63, 10 months ago

show that x=√3 is a solution of equation x^2-3√3+6= 0​

Answers

Answered by BrainlyConqueror0901
7

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Value\:of\:x=\sqrt{3}\:and\:2\sqrt{3}}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies  {x}^{2}  - 3 \sqrt{3} x + 6 = 0 \\  \\ \red{\underline \bold{To \: Show:}} \\  \tt:  \implies x =  \sqrt{3}

• According to given question :

 \tt \circ \:  {x}^{2}  - 3 \sqrt{3x}  + 6 = 0 \\  \\ \tt \circ \: a = 1 \\  \\  \tt \circ \: b =  - 3 \sqrt{3} \\  \\   \tt \circ \: c =  6  \\  \\  \bold{As \: we \: know \: that} \\ \tt:  \implies D =  {b}^{2}  - 4ac \\  \\ \tt:  \implies D =  { (- 3 \sqrt{3} )}^{2}  - 4 \times 1 \times 6 \\  \\ \tt:  \implies D = 27 - 24 \\  \\  \green{\tt:  \implies D = 3 } \\  \\ \tt:  \implies x=  \frac{ - b \pm \sqrt{D} }{2a}  \\  \\ \tt:  \implies x =  \frac{ - ( - 3 \sqrt{3}) \pm \sqrt{3}  }{2 \times 1}  \\  \\ \tt:  \implies x=   \frac{3 \sqrt{3}  \pm  \sqrt{3} }{2}  \\  \\ \tt:  \implies x =  \frac{3 \sqrt{3} +  \sqrt{3}  }{2}  \: and \:  \frac{3 \sqrt{3}  -  \sqrt{3} }{2}  \\  \\ \tt:  \implies x =  \frac{4 \sqrt{3} }{2}  \: and \:  \frac{2 \sqrt{3} }{2}  \\  \\  \green{\tt:  \implies x= 2 \sqrt{3}  \: and \:  \sqrt{3} }

Similar questions