Math, asked by invincibleroyalace, 7 months ago

Show that (x-4) is factor of 5x

3

-7x2

-45x-28, hence factorize it.

Answers

Answered by MaheswariS
0

\underline{\textsf{Given:}}

\textsf{Polynomial is}

\mathsf{5x^3-7x^2-45x-28}

\underline{\textsf{To find:}}

\textsf{(x-4) is a factor of the given polynomial}

\underline{\textsf{Solution:}}

\textsf{Let}\;\mathsf{P(x)=5x^3-7x^2-45x-28}

\textsf{Put x=4}

\mathsf{P(4)=5(4)^3-7(4)^2-45(4)-28}

\mathsf{P(4)=5(64)-7(16)-45(4)-28}

\mathsf{P(4)=320-112-180-28}

\mathsf{P(4)=320-320=0}

\textsf{By factor theorem}

\therefore\textsf{(x-4) is a factor of P(x)}

\textsf{By Synthetic division, we get}

\begin{array}{r|cccc}4&5&-7&-45&-28\\&&20&52&28\\\cline{2-5}&5&13&7&\boxed{0}\end{array}

\implies\mathsf{5x^3-7x^2-45x-28=(x-4)(5x^2+13x+7)}

Find more:

Use remainder theorem to factorize: 2x^3+3x^2-9x-10

https://brainly.in/question/2750302

Using factor theorem, factorize each of the following polynomials: (i) x3 – 6x2 + 3x + 10 (ii) 2y3 – 5y2 – 19y + 42

https://brainly.in/question/18561792

Similar questions