Math, asked by 184104, 5 months ago

show that:- (x^a+b)^2 × (x^b+c)^2 × (x^c+a)^2 / (x^a × x^b × x^c) = 1​

Attachments:

Answers

Answered by daniya2810
1

Answer:

(x^a+b) ^ 2 x (x ^ b+c) ^ 2 x (x^c+a)^ 2

_____________________

x^a x^b x^c

= {(x)^ab} ^2 {(x)^bc}^ 2 { (x)^ ca} ^2

___________________________

{(3x)²}3

=. (x)⁶

_______

(x)⁶

= 1

Answered by Dinosaurs1842
2

To prove that:

 \dfrac{(x ^{a + b}) ^{2}   \times   ({x}^{b + c})^{2}   \times  ( {x}^{c + a})^{2} }{( {x}^{a} \times  {x}^{b} \times  {x}^{c}) ^{4}    }  = 1

_________________________________

we know that,

( {a}^{m}) ^{n}  =  {a}^{mn}

_________________________________

 \dfrac{( {x}^{2(a + b)})  \times  ( {x}^{2(b + c)})  \times   {x}^{2(c + a)}) }{( {x}^{a} \times  {x}^{b}  \times  {x}^{c}) ^{4}   }

 \dfrac{ ({x}^{2a + 2b}) \times ( {x}^{2b + 2c}) \times  ({x}^{2c + 2a})  }{( {x}^{a}  \times  {x}^{b} \times  {x}^{c}) ^{4}   }

_________________________________

 {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

_________________________________

\dfrac{ {x}^{2a + 2b + 2c+2b + 2c + 2a} }{( {x}^{a + b + c})^{4}  }

 \dfrac{ {x}^{4a + 4b + 4c} }{ {x}^{4(a + b + c)} }

 \dfrac{ {x}^{4(a + b + c)} }{ {x}^{4(a + b + c)} }  = 1

Hence verified

____________________________________________

Important points to note:

 \dfrac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}

{a}^{n}  \times  {b}^{n}  =  {ab}^{n}

 {a}^{ - m}  =  \frac{1}{ {a}^{m} }

___________________________________________

Similar questions