Math, asked by arjun6376, 11 months ago

show that
(x^a-b)^a+b (x^b-c) (x^c-d)^c+a=1​

Answers

Answered by manjunpai2000
2

Answer:

 {x}^{ ({a - b})^{(a + b)} }  \times  {x}^{ {(b - c)}^{(b + c)} }  \times  {x}^{ ({c - a})^{(c + a)} }  = 1 \\  {x}^{ {a} ^{2} -  {b}^{2}  }  \times  {x}^{ {b}^{2} -  {c}^{2}  }  \times  {x}^{ {c}^{2} -  {a}^{2}  }  = 1 \\  {x}^{{a}^{2} -  {b}^{2}  +  {b}^{2} -  {c}^{2} +  {c}^{2}  -  {a}^{2} }  \:  = 1 \\  {x}^{0}  = 1

Similar questions