Math, asked by jasmeetgujral2006, 7 months ago

show that x^a(b-c)/x ^b(a-c) / (x^b/x^a)^c = 1

Answers

Answered by rishabh874313
0

HOPE IT WILL HELP YOU IF IT THEN FOLLOW ME AND ALSO MARK ME AS BRAINLIST

PLEASE _______________

Attachments:
Answered by pulakmath007
10

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

We are aware of the below mentioned law of indices

1.

 {( {a}^{m} )}^{n}  =  {a}^{mn}

2.

 \displaystyle \:  \frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}

3.

   {a}^{0}  = 1

TO PROVE

 \displaystyle \:  \frac{ {x}^{a(b - c)} }{ {x}^{b(a - c)} }  \div   {\bigg(\frac{ {x}^{b}  }{ {x}^{a} } \bigg)}^{c}  = 1

PROOF

 \displaystyle \:  \frac{ {x}^{a(b - c)} }{ {x}^{b(a - c)} }  \div   {\bigg(\frac{ {x}^{b}  }{ {x}^{a} } \bigg)}^{c}

 =  \displaystyle \:  \frac{ {x}^{(ab - ac)} }{ {x}^{(ab - bc)} }  \div   {\bigg({ {x}^{b - a}  }{ } \bigg)}^{c}

 =  \displaystyle \:  { {x}^{(ab - ac - ab + bc)} } \div   { {x}^{(bc - ac)}  }

 =  \displaystyle \:  { {x}^{(bc - ac )} } \div   { {x}^{(bc - ac)}  }

 =  \displaystyle \:  { {x}^{(bc - ac - bc + ac )} }

 =  {x}^{0}

 = 1

Hence proved

Similar questions