Show that:
(x^a/x^b)^1/ab (x^b/x^c)^1/bc (x^c/x^a)^1/ca =1
Answers
Answered by
2
Anonymous:
Nicely done :)
Answered by
3
Formulas required :
x^m/x^n = x^(m - n)
x^m . x^n = x^( m + n )
PROOF
( x^a/x^b )^( 1/ab ) ( x^b/x^c )^ ( 1/bc ) ( x^c/x^a )^1/ca
⇒ ( x^( a - b ) )^( 1/ab ) ( x^( b - c ) )^( 1/bc ) ( x^( c - a ) )^1/ca
⇒ x^( a - b )/ab x^( b - c )/bc x^( c - a )/ac
⇒ x^[ ( a - b )/ ab + ( b - c ) / bc + ( c - a ) / ac ]
⇒ x^[ ( ac - bc + ab - ac + bc - ab ) / abc ]
⇒ x^[ 0 / abc ]
⇒ x^0
⇒ 1
Similar questions