Math, asked by shibupsimon, 1 year ago

show that (x^a÷x^b)^a^2+ab+b^2×(x^b÷x^c)^b^2+bc+c^2×(x^c÷x^a)^c^2+ca+a^2=1

Answers

Answered by rohitkumargupta
10

HELLO DEAR,

\bold{\large{(\frac{x^a}{x^b})^{a^2 + ab + b^2} * (\frac{x^b}{x^c})^{b^2+bc+c^2} * (\frac{x^c}{x^a})^{c^2+ac+a^2}}}

\bold{\large{x^{(a - b)(a^2 +ab+b^2)} * x^{(b - c)(b^2 + bc + c^2)} * x^{(c - a)(a^2 + ac + c^2)}}}
\bold{\large{\to\to\to\to\to\to\to\to\to\to\to\boxed{m^n/m^x = m^{n - x}}}}

\bold{\large{x^{a^3 - b^3 + b^3 - c^3 + c^3 - a^3}}}
\bold{\large{\to\to\to\to\to\to\to\to\to\to\to\boxed{(x - y)(x^2+xy+y^2) = (x^3 - y^3)}}}

\bold{\large{x^0 = 1}}

I HOPE ITS HELP YOU DEAR,
THANKS

Similar questions