Math, asked by aditikanwadkar, 1 month ago

Show that (x^a / x^b)^c X (x^b / x^c)^a X (x^c / x^a)^b = 1.

Answers

Answered by Madhav4244
1

Answer:

(x^a / x^b)^c  \times  (x^b / x^c)^a  \times  (x^c / x^a)^b = 1  \\ x^{ac} / x^{bc}  \times  x^{bc}/ x^{ac}  \times  x^{bc} / x^{ab} = 1  \\ on \: solving \: we \: get \\ x^{bc} / x^{ab} = 1 \\ {1}^{bc - ab}   = 1 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (x \: is \: divided \: by \: x) \\ 1 \: power \: to \:anything  \: will \: be \: 1 \\ 1 = 1

Similar questions