Math, asked by amanyadavmpi56, 9 days ago

show that (x+y) ^1*(x^-1+y^-1)=(xy) ^1​

Answers

Answered by anindyaadhikari13
3

SOLUTION:

We have to prove that:

 \rm \hookrightarrow {(x + y)}^{ - 1} \times ( {x}^{ - 1}  +  {y}^{ - 1}) =  {(xy)}^{ - 1}

Taking Left Hand Side, we get:

 \rm = {(x + y)}^{ - 1} \times ( {x}^{ - 1}  +  {y}^{ - 1})

 \rm = \dfrac{1}{x + y} \times \bigg ( \dfrac{1}{x} +  \dfrac{1}{y}  \bigg)

 \rm = \dfrac{1}{x + y} \times  \dfrac{y + x}{xy}

 \rm = \dfrac{1}{x + y} \times  \dfrac{x +y }{xy}

 \rm = \dfrac{1}{xy}

\rm=(xy)^{-1}

Now, taking Right Hand Side, we get:

\rm=(xy)^{-1}

Therefore:

→ LHS = RHS

Hence Proved..!!

LEARN MORE:

Laws of exponents.

 \rm 1. \:  \:  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

 \rm 2. \:  \:  ({a}^{m})^{n}  =  {a}^{mn}

\rm 3. \:  \:  \dfrac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}

 \rm4. \:  \:  {a}^{m} \times  {b}^{m} =  {(ab)}^{m}

 \rm5. \: \:   \bigg(\dfrac{a}{b} \bigg)^{m}  =  \dfrac{ {a}^{m} }{ {b}^{m} }

 \rm6. \:  \:  {a}^{ - n} =  \dfrac{1}{ {a}^{n} }

 \rm7. \:  \:  {a}^{n} =  {b}^{n} \rightarrow a = b, n \neq0

 \rm8. \:  \:  {a}^{m} =  {a}^{n} \rightarrow m = n, a \neq 1

Similar questions