Show that (x+y)^3=x^3+y^3+3xy(x-y)
Answers
Answered by
3
Answer:
(x+y)³=x³+y³+3xy(x+y)
(x+y)³=
(x+y)(x+y)(x+y)
(x+y)²(x+y)
= (x²+y²+2xy) (x+y)
= x(x²+y²+2xy) +y(x²+y²+2xy)
= x³+xy²+2x²y+x²y+y³+2xy²
= x³+ 3xy²+y³+3x²y
= x³+y³+3xy(x+y)
therefore RHS= LHS
Answered by
1
Step-by-step explanation:
(x+y)^3
=>[(x+y)(x+y)](x+y)
=>[x (x+y)+y (x+y)](x+y)
=>[x^2+xy+xy+y^2](x+y)
=>x (x^2+2xy+y^2)+y (x^2+2xy+y^2)
=>x^3+2x^2y+xy^2+x^2y+2xy^2 +y^3
=>x^3+y^3+3x^2y+3xy^2
=>x^3+y^3+(3x^2y+3xy^2)
=>x^3+y^3+3xy (x+y)
Similar questions