Math, asked by pawarakanksha00, 1 month ago

show that y=e^ax is the general solution of X dy/dx=y.log y​

Answers

Answered by senboni123456
1

Answer:

Step-by-step explanation:

We have,

\tt{\green{x\,\dfrac{dy}{dx}=y\cdot\,log(y)}}

\sf{\implies\,\dfrac{dy}{y\cdot\,log(y)}=\dfrac{dx}{x}}

\sf{\implies\,\displaystyle\int\dfrac{dy}{y\cdot\,log(y)}=\int\dfrac{dx}{x}}

\rm{\purple{Put\,\,\,\,\,\,log(y)=v}}

\rm{\implies\purple{\dfrac{dy}{y}=dv}}

So,

\sf{\implies\,\displaystyle\int\dfrac{dv}{v}=\int\dfrac{dx}{x}}

\sf{\implies\,ln|v|=ln|x|+c}

Let c = ln(a),

\sf{\implies\,ln|v|=ln|x|+ln|a|}

\sf{\implies\,ln|v|=ln|ax|}

\sf{\implies\,v=ax}

\sf{\implies\,log(y)=ax}

\sf{\implies\,y=e^{ax}}

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:y =  {e}^{ax}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y =\dfrac{d}{dx}{e}^{ax}

We know,

\boxed{ \tt{ \: \dfrac{d}{dx} {e}^{x} =  {e}^{x} \: }}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} =  {e}^{ax}\dfrac{d}{dx}(ax)

\rm :\longmapsto\:\dfrac{dy}{dx} =ay\dfrac{d}{dx}(x)

\rm :\longmapsto\:\dfrac{dy}{dx} =ay \times 1

\rm :\longmapsto\:\dfrac{dy}{dx} =ay

Now, Consider,

\rm :\longmapsto\:x\dfrac{dy}{dx}

\rm \:  =  \: xay

can be rewritten as

\rm \:  =  \: y(ax)

which can be rewritten as

\rm \:  =  \: y log{e}^{ax}

 \:  \:  \:  \bf \: [ \because \: log {e}^{x}  = x \: ]

\rm \:  =  \: ylogy

Hence,

\rm \implies\:\boxed{ \tt{ \: x \: \dfrac{dy}{dx} \:  =  \: y \: logy \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions