Math, asked by erorrdevil, 11 months ago

show the cube of any positive integer will be in the form of 8m or 8m+1 or 8m+3 o r8m+5

Answers

Answered by ShírIey
41

AnswEr:

let us Consider that a & b are two positive integers.

By Using Euclid's Division Lemma

Here, a = bq + r where, 0 < r < b and r can be 0, 1, 3, 5.

a = 8q

Cubing Both Sides

↬ (a)³ = (8q)³

↬ a³ = 512q³

↬ a³ = 8 × (64q)³ [m = 64³]

__________________________

a = 8q + 1

Cubing Both Sides

↬ (a)³ = (8q + 1)³

↬ a³ = 8q³ + 1³ + 3(8q)²(1) + 3(8q) (1)²

↬ a³ = 512q³ + 192q² + 24q

  • Taking Common 8

↬a³ = 8(64q³ + 24q² + 3q) + 1 [m = 64q³ + 24q2² + 3q]

___________________________

a = 8q + 3

Cubing Both Sides

↬(a)³ = (8q + 3)³

↬ a³ = 8q³ + 3² + 3(8q)² (3) + 3(8a) (3)²

↬ a = 512q³ + 27 + 576q² + 216q

  • Taking Common 8

↬a³ = 8(64q + 72q² + 27q + 3) + 3

[m = (64q + 72q² + 27q + 3) ]

____________________________

a = 8q + 5

Cubing Both Sides

↬(a)³ = (8q + 5)³

↬a³ = (8q)³ + (5)³ + 3(8q)²(5) + 3(8q) (5)²

↬a³ = 513q³ + 125 + 960q² + 600q

↬a = 8(64³ + 120q² + 175q + 15) + 5 + 5

Here, [ m = (64³ + 120q² + 175q + 15) ]

Hence, the cube of any positive integer can be in the form of 8m or 8m+1 or 8m+3 o r8m+5.

_____________________________

Similar questions