Math, asked by nidhisingh1031959, 8 months ago

Show the diagonals of a rhombus are perpendicular to each other​

Answers

Answered by singhjaynandan679
0

given: rhombus ABCD

ti prove:Ac perpendicular BD

proof: since ABCDis a rhombus

AB=BC=CD=DA

in triangle AOB and And triangle COB

OA=OC(diagonals of a parallelogram bisect each other)

OB=OB(common)

AB=CB(side of rhombus are equal)

triangle AOB=triangle COB(sss congruence rule)

=angle AOB=angle=COB(cpct..(1))

Answered by Anonymous
3

\large\sf\red{Consider\:the\:rhombus\:ABCD}

\huge\sf\green{You\:know\:that,}

\large\sf{AB=BC=CD=DA}

\large\sf{In\:∆AOD\:and\:∆COD}

\large\sf{OA=OC(diagonals\:of\:a\:||gm\:bisect\:each\:other}

\large\sf{OD=OD(common)}

\large\sf{AD=CD(given)}

\large\therefore\large\sf{∆AOD\:\cong\:∆COD} (By SSS congruence rule)

\large\sf{\angle{AOD}=\angle{COD}(By\:CPCT)}

\large\sf\orange{\angle{AOD}+\angle{COD}=180°(Linear\:pair)}

\large\sf\orange{2\angle{AOD}=180°}

\large\sf\orange{\angle{AOD}=90°}

\small\tt\green{So,\:the\:diagonals\:of\:a\:rhombus\:are\:perpendicular\:to\:each\:other}

Attachments:
Similar questions