Math, asked by abhishekdevyash, 19 days ago

Show the following inequalities on a number line. (i) x > 4 and x < 9 (ii) x _< –1​

Answers

Answered by FAILULER999
0

Answer:

Answer:

Given :-

A mass of 1000 kg having a speed of 10 m/s is brought to rest over a distance of 100 m.

To Find :-

What is the retardation.

What is the retardation force.

Formula Used :-

\clubsuit♣ Third Equation Of Motion Formula :

\longrightarrow \sf\boxed{\bold{\pink{v^2 - u^2 =\: 2as}}}⟶v2−u2=2as

where,

v = Final Velocity

u = Initial Velocity

a = Acceleration

s = Distance Covered

\clubsuit♣ Force Formula :

\longrightarrow \sf\boxed{\bold{\pink{F =\: ma}}}⟶F=ma

where,

F = Force

m = Mass

a = Acceleration

Solution :-

First we have to find the retardation :

Given :

Final Velocity = 0 m/s

Initial Velocity = 10 m/s

Distance Covered = 100 m

According to the question by using the formula we get,

\implies \sf (0)^2 - (10)^2 =\: 2a(100)⟹(0)2−(10)2=2a(100)

\implies \sf (0 \times 0) - (10 \times 10) =\: 200a⟹(0×0)−(10×10)=200a

\implies \sf 0 - 100 =\: 200a⟹0−100=200a

\implies \sf - 100 =\: 200a⟹−100=200a

\implies \sf \dfrac{- 100}{200} =\: a⟹200−100=a

\implies \sf - 0.5 =\: a⟹−0.5=a

\implies \sf\bold{\purple{a =\: - 0.5\: m/s^2}}⟹a=−0.5m/s2

Now, we have to find the retardation :-

\leadsto \bf Retardation =\: - (Acceleration)⇝Retardation=−(Acceleration)

\leadsto \sf Retardation =\: - (- 0.5)⇝Retardation=−(−0.5)

\leadsto \sf\bold{\red{Retardation =\: 0.5\: m/s^2}}⇝Retardation=0.5m/s2

\therefore∴ The retardation is 0.5 m/s² .

Now, we have to find the retardation force :-

Given :

Mass = 1000 kg

Acceleration = 0.5 m/s²

According to the question by using the formula we get,

\dashrightarrow \sf Force =\: 1000 \times 0.5⇢Force=1000×0.5

\dashrightarrow \sf\bold{\red{Force =\: 500\: N}}⇢Force=500N

\therefore∴ The retardation force is 500 N .

Similar questions