Show the square of a positive integer is of the form 5m ,5m+1 or 5m+4
Answers
Answered by
0
a=(5m) or (5m+1) or (5m+2) or (5m+3) or (5m+4)
a²=25m² or 25m²+10m+1 or 25m²+20m+4 or 25m²+30m+9 or 25m²+40m+16
=5(5m²) or 5(5m²+2m)+1 or 5(5m²+4m)+4 or 5(5m²+6m+1)+4 or 5(5m²+8m+3)+1
=5m or 5m+1 or 5m+4 or 5m+4 or 5m+1
PROVED
harsh4631:
please mark me as a brainliest
Answered by
0
Step-by-step explanation: According to Euclid's division lemma;given two positive integers a &b there exist a unique integer q &r where a=bq+r and 0≤r<b
ACC TO QUESTION:a=bq+r b=5 r=0,1,2,3,4
CASE-1
when r=0
a=bq+r
a=5q+0=5q
a²=(5q)²
a²=25q²
a²=5(5q²)=
a²=5m where m=5q²
similarly
when r=1
a=5q+1
a²=(5q+1)²
a²=5q²+10q+1 (by identity (a+b)²}
a²=5(q²+2q)+1
a²=5m+1 where m=q²+2q
case-3
prove it like the one done above except reminder=3 and in case-4 reminder=4
hope this answer helped you
Similar questions