show the square of odd positive integer is of the form 8q + 1 for some positive integer q
Answers
Step-by-step explanation:
Let 'a' be the any positive integer.
Then, b = 8 .
Using Euclid's division lemma :-
0 ≤ r < b => 0 ≤ r < 8 .
The possible values of r is 0, 1, 2, 3, 4, 5, 6, 7.
▶ Question said Square of odd positive integer , then r = 1, 3, 5, 7 .
→ Taking r = 1 .
a = bm + r .
= (8q + 1)² .
= 64m² + 16m + 1
= 8( 8m²+ 2m ) + 1 .
= 8q + 1 . [ Where q = 8m² + 2m ]
→ Taking r = 3 .
a = bq + r .
= (8q + 3)² .
= 64m² + 48m + 9 = 64m² + 48m + 8 + 1 .
= 8( 8m²+ 6m + 1 ) + 1 .
= 8q + 1 . [ Where q = 8m² + 6m + 1 ]
→ Taking r = 5 .
a = (8q + 5)² .
= 64m² + 80m + 25 = 64m² + 80m + 24 + 1 .
= 8( 8m²+ 10m + 3 ) + 1 .
= 8q + 1 . [ Where q = 8m² + 10m + 3 ]
→ Taking r = 7 .
a = ( 8q + 7 )² .
= 64m² + 112m + 49 = 64m² + 112m + 48 + 1 .
= 8( 8m²+ 14m + 6 ) + 1 .
= 8q + 1 . [ Where q = 8m² + 14m + 6 ] .
Hence, the square of any odd positive integer is of the form 8q + 1 .
NCERT Class X
Mathematics - Exemplar Problems
Chapter _QUESTION PAPER SET II
Answer:
The square of any odd positive integer is of the form 8q + 1 .
✔✔ Proved✔✔
Step-by-step explanation:
Given Probelm:
Show the square of odd positive integer is of the form 8q + 1 for some positive integer q
Solution:
⇒Let 'a' be the any positive integer.
⇒Then, b = 8 .
Using Euclid's division lemma:
0 ≤ r < b => 0 ≤ r < 8 .
⇒The possible values of r is 0, 1, 2, 3, 4, 5, 6, 7.
According to your question:
Square of odd positive integer , then r = 1, 3, 5, 7 .
⇒ Taking r = 1 .
⇒a = bm + r .
⇒ (8q + 1)² .
⇒ 64m² + 16m + 1
⇒8( 8m²+ 2m ) + 1 .
⇒ 8q + 1 .{Where q = 8m² + 2m}
⇒ Taking r = 3 .
⇒a = bq + r .
⇒ (8q + 3)² .
⇒ 64m² + 48m + 9 = 64m² + 48m + 8 + 1 .
⇒ 8( 8m²+ 6m + 1 ) + 1 .
⇒ 8q + 1 . [ Where q = 8m² + 6m + 1 ]
⇒ Taking r = 5 .
⇒a = (8q + 5)² .
⇒ 64m² + 80m + 25 = 64m² + 80m + 24 + 1 .
⇒8( 8m²+ 10m + 3 ) + 1 .
⇒ 8q + 1 . [ Where q = 8m² + 10m + 3 ]
⇒ Taking r = 7 .
⇒a = ( 8q + 7 )² .
⇒ 64m² + 112m + 49 = 64m² + 112m + 48 + 1 .
⇒ 8( 8m²+ 14m + 6 ) + 1 .
⇒ 8q + 1 . [ Where q = 8m² + 14m + 6 ] .
Hence, the square of any odd positive integer is of the form 8q + 1 .