Physics, asked by simranchowdhury9990, 1 month ago

Show the total energy remain constant in a gravitational field.[4] koi bhi answer kar diy na me use thanks kar dungi

Answers

Answered by xJOY12345
1

Answer:

this is the answer hope it helps

Attachments:
Answered by MissSolitary
0

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \underline{ \underline{{ \huge{ \mathfrak{ \:  Q}}} \mathfrak{uestion :-}}}

Show the total energy remain constant in gravitational field.

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \underline{ \underline{{ \huge{ \mathfrak{ \: T}}} \mathfrak{o \:  \:  prove :- }}}

The total energy = constant

K.E. + P.E. = constant

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \underline{ \underline{{ \huge{ \mathfrak{ \:S}}} \mathfrak{olution :-  }}}

(Also refer the attachment given)

In the above give fig.

Let

  • Mass of the body = m
  • Height = h
  • Under gravity = g

At position A (at height h above the ground) :

Potential Energy = mgh

Kinetic energy = 0 (as it is above the ground)

∴ Total energy = Potential energy + kinetic energy

⇰ mgh + 0

mgh ...(i)

At position B (when it has fallen through to a distance x) :

Let:

  •  \rm \: velocity = v_1
  • initial velocity = u
  • distance (S) = x
  • a = g

We know that,

 \rm ⇰  \: v² = u² + 2aS

 \rm ⇰ \:  v_1² = 0 + 2gx

 \rm⇰  \: v_1² = 2gx

 \rm∴  \:  K.E. =  \dfrac{1}{2} mv_1²

 \rm⇰ \:  \dfrac{1}{2}m(2gx)

  \rm⇰ \:  \dfrac{1}{ \cancel2}m \times  \cancel{2}gx

 \rm \rm⇰ \: mgx

Now,

for potential energy at B,

h = h - x

∴ P.E. = mgh

⇰ mg(h-x)

∴ Total energy = P.E. + K.E.

⇰ mg(h-x) + mgx

⇰ mgh - mgx + mgx

mgh ...(ii)

At position C (on the ground) :

P.E. = 0

Let:

  • velocity = v
  • initial velocity = u
  • distance (S) = h
  • a = g

We know that,

⇰ v² = u² + 2aS

⇰ v² = 0 + 2gh

⇰ v² = 2gh

 \rm ∴  \: K.E. =  \dfrac{1}{2}  mv²

 \rm⇰ \:  \dfrac{1}{2} m(2gh)

 \rm \:  \rm⇰ \:  \dfrac{1}{ \cancel2} m \times \cancel{ 2}gh

 \rm⇰ \: mgh

∴ Total energy = P.E. + K.E.

⇰ 0 + mgh

mgh ...(iii)

Now,

From eq. (i) , (ii) & (iii)..

We can conclude that,

⇰ Sum of Total energy = mgh

⇰ Total energy = constant... (proved)

Attachments:
Similar questions