Math, asked by shashidharyj3482, 7 months ago

Show the vector v1=(1,2,3),v2=(0,1,2),v3=(0.0.1)generate v3(R)

Answers

Answered by pulakmath007
19

\displaystyle\huge\red{\underline{\underline{Solution}}}

TO PROVE

 \sf{The \:  vector \:  \:  v_1=(1,2,3),v_2=(0,1,2),v_3=(0, 0, 1)}

 \sf{generates \:   \:  \: { \mathbb{R}}^{3} }

PROOF

 \sf{Let \:  \:  S = \: \{ \: (1,2,3),(0,1,2),(0, 0, 1) \}\: }

 \sf{Let \:  \alpha  =  (a, b, c) \: be  \: an  \: arbitrary \:  vector  \: of  \:  { \mathbb{R}}^{3}}

 \sf{We  \: have  \: to \:  show  \: that \:  \:  \alpha  \in L(S) } \:

If possible let

 \sf{ \alpha  =  \: r_1v_1+r_2v_2+r_3v_3  \:  \: for  \: real \:  \: r_1,r_2,r_3}

 \implies \sf{(a,b,c)  =  \: r_1(1,2,3)+r_2(0,1,2)+r_3(0,0,1) }

 \sf{ \implies (a, b, c) =(r_1,2r_1+r_2,3r_1+2r_2+r_3)}

Comparing

 \sf{ \implies r_1= a, 2r_1+r_2=b,c=3r_1+2r_2+r_3}

Which gives

 \sf{r_1= a}

 \sf{r_2=b - 2 a}

 \sf{r_3=c - 2b - 3 a}

 \sf{ This \:  proves \: that \:  \:  \alpha  \in L(S) } \:

 \sf{ \therefore \:  \:   \mathbb{{R}^{3} } \:  \subset \:   \:  L(S)}

 \sf{Again  \:  \:  \: S \:  \subset { \mathbb{R}}^{3} }

Also L(S) being the smallest subspace containing S

 \sf{ \therefore  \:  \:  \: L(S) \:  \subset { \mathbb{R}}^{3} }

 \sf{ Consequently  \:  \:  \: L(S) \:  =  { \mathbb{R}}^{3} }

Hence

 \sf{The \:  vector \:  \:  v_1=(1,2,3),v_2=(0,1,2),v_3=(0, 0, 1)}

 \sf{generates \:   \:  \: { \mathbb{R}}^{3} }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Show that sinix=isinhx

https://brainly.in/question/11810908

Similar questions