Math, asked by emelycansing, 4 months ago

Show your solution help​

Attachments:

Answers

Answered by Anonymous
6

  \frac{10x + 3}{3 (x + 1)(2x + 3)}

Question :

 \frac{2x - 1}{2 {x}^{2} + 5x + 3 }  +  \frac{2}{3x + 3}

Solution :

 =  \frac{2x - 1}{2 {x}^{2}  + 5x + 3}  +  \frac{2}{3x + 3}

Let's find the roots of quadratic equation.

 =  \frac{2x - 1}{2 {x}^{2} + 2x + 3x + 6 }  +  \frac{2}{3x + 3}

 =  \frac{2x - 1}{2x(x + 1) + 3(x + 1)}  +  \frac{2}{3x + 3}

 =  \frac{2x - 1}{(2x + 3)(x + 1)}  +   \frac{2}{3x + 3}

Cross Multiplying the terms

 =  \frac{(3x + 3)(2x - 1) + 2(2x + 3)(x + 1)}{(2x + 3)(x  + 1)(3x + 3)}

 =  \frac{(6 {x}^{2}  - 3x + 6x  - 3) + 2(2 {x}^{2}+ 2x + 3x + 3 )}{(2x + 3)(x + 1)(3x + 3)}

 =  \frac{6 {x}^{2} + 3x  - 3 + 4 {x}^{2}  + 4x + 6x + 6}{(2x + 3)(x + 1)(3x + 3)}

 =  \frac{6 {x}^{2}  + 4 {x}^{2} + 3x + 4x  + 6x + 6 - 3}{(2x + 3)(x + 1)(3x + 3)}

 =  \frac{10 {x}^{2} + 13x + 3 }{(2x + 3)(x + 1)(3x + 3)}

Let's find the roots of quadratic equation,

 =  \frac{10 {x}^{2} + 10x + 3x + 3 }{(2x + 3)(x + 1)(3x + 1)}

 =  \frac{10x(x + 1) + 3(x + 1)}{(2x + 3)(x + 1)(3x + 1)}

 =  \frac{(10x + 3)(x + 1)}{(2x + 3)(x + 1)(3x + 1)}

 =  \frac{(10x + 3)}{(2x + 3)(3x + 3)}

 =  \frac{10x + 3}{3 (x + 1)(2x + 3)}

Answered by mathdude500
1

Question :-

\bf \:Solve : \dfrac{2x - 1}{ {2x}^{2} + 5x + 3 }  + \dfrac{2}{3x + 3}

Answer :-

\bf \:\dfrac{2x - 1}{ {2x}^{2} + 5x + 3 }  + \dfrac{2}{3x + 3}

\bf\implies \:\dfrac{2x - 1}{ {2x}^{2} + 2x + 3x + 3 }  + \dfrac{2}{3(x + 1)}

\bf\implies \:\dfrac{2x - 1}{ 2x(x + 1) + 3(x + 1) }  + \dfrac{2}{3(x + 1)}

\bf\implies \:\dfrac{2x - 1}{ (2x+ 3)(x + 1) }  + \dfrac{2}{3(x + 1)}

On taking LCM, we get

\bf\implies \:\dfrac{3(2x - 1)+ 2(2x + 3)}{ 3(2x+ 3)(x + 1) }

\bf\implies \:\dfrac{6x - 3 + 4x + 6}{ 3(2x+ 3)(x + 1) }

\bf\implies \:\dfrac{10x  + 3}{ 3(2x+ 3)(x + 1) }

___________________________________________

Similar questions