Math, asked by akpranshi123, 4 days ago

Shreya sold his bicycle at gain of 10%. If he had bought it for 10% less and sold it for ₹45 more, he would have gained 25%.Find the cost price of the bicycle.​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Let assume that cost price of a bicycle of ₹ x

Gain % = 10 %

Now, we know

\color{green}\boxed{ \rm{ \:Selling \: Price =  \frac{(100 + Gain\%) \times Cost \: Price}{100}  \: }} \\

So, on substituting the values, we get

\rm \: Selling \: Price \:  =  \: \dfrac{(100 + 10) \times x}{100}  \\

\rm \: Selling \: Price \:  =  \: \dfrac{(110) \times x}{100}  \\

\rm\implies \:Selling \: Price \:  =  \: \dfrac{11x}{10}  \\

Now, According to statement, If he had bought it for 10% less and sold it for ₹45 more, he would have gained 25%.

Now,

\rm \: Cost \: Price = x - 10\% \: of \: x \\

\rm \:  =  \: x - \dfrac{10}{100}  \times x \\

\rm \:  =  \: x - \dfrac{x}{10} \\

\rm \:  =  \: \dfrac{10x - x}{10} \\

\rm \:  =  \: \dfrac{9x}{10} \\

\rm \: Gain \:\% \:  =  \: 25 \: \% \\

\rm \: Selling \: Price \:  =  \: \dfrac{11x}{10} + 45 \\

Now, we know

\color{green}\boxed{ \rm{ \:Selling \: Price =  \frac{(100 + Gain\%) \times Cost \: Price}{100}  \: }} \\

So, on substituting the values, we get

\rm \: \dfrac{11x}{10} + 45 = \dfrac{(100 + 25)}{100} \times \dfrac{9x}{10}  \\

\rm \: \dfrac{11x + 450}{10} = \dfrac{(125)}{100} \times \dfrac{9x}{10}  \\

\rm \: 11x + 450 = \dfrac{5}{4} \times 9x  \\

\rm \: 4(11x + 450) = 45x \\

\rm \: 44x + 1800 = 45x \\

\rm \: 44x  - 45x =  - 1800 \\

\rm \:  - x =  - 1800 \\

\color{green}\rm\implies \:x = 1800 \\

Hence, the cost price of bicycle = ₹ 1800

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{Gain = \sf S.P. \: – \: C.P.} \\ \\ \bigstar \:\bf{Loss = \sf C.P. \: – \: S.P.} \\ \\ \bigstar \: \bf{Gain \: \% = \sf \Bigg( \dfrac{Gain}{C.P.} \times 100 \Bigg)\%} \\ \\ \bigstar \: \bf{Loss \: \% = \sf \Bigg( \dfrac{Loss}{C.P.} \times 100 \Bigg )\%} \\ \\ \\ \bigstar \: \bf{S.P. = \sf\dfrac{(100+Gain\%) or(100-Loss\%)}{100} \times C.P.} \\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions