SI UNIT OF ENERGY ??
Answers
The SI unit of energy/work is the joule (J), named for English physicist James Prescott Joule (1818 - 1889). Joule discovered the relationship between heat and mechanical work, which led to the development of the laws of thermodynamics.
Brainliest please meko genius bnna hai. :)
Answer:
Simply put, energy is the capacity to do work (W) - everything from propelling an automobile to heating a home to lighting a room. Many forms of work involve an energy transformation. A light bulb transforms electrical energy into heat and light energy. An internal-combustion engine converts chemical energy into heat and mechanical energy. A dynamo changes mechanical energy into heat and electrical energy.
Renewable-energy solutions exploit energy sources that will not be exhausted by these transformations and reduce energy consumption by making the transformations more efficient. Photovoltaic (PV) panels create electricity from sunlight instead of burning nonrenewable fossil fuels. Compact fluorescent light (CFL) bulbs use less energy than incandescent bulbs because they convert more electricity into light and less into heat.
Since energy and work are two sides of the same coin, they are measured with the same units. The SI unit of energy/work is the joule (J), named for English physicist James Prescott Joule (1818 - 1889). Joule discovered the relationship between heat and mechanical work, which led to the development of the laws of thermodynamics.
One joule equals the work done by a force of one newton moving an object one meter (J = N · m). That's about the amount of energy required to lift a small apple one meter against Earth's gravity. One joule also equals the energy required to move an electric charge of one coulomb through an electric potential difference of one volt (J = C · V).
Power (P) is the rate at which energy is transferred or converted. Thus, power equals work divided by time (P = W / t). The SI unit of power is the watt (W), in honor of Scottish inventor James Watt (1736 - 1819). Watt's improvements to the steam engine helped to launch the Industrial Revolution. Ironically, Watt himself coined the term "horsepower" to characterize the benefits of his steam engine.
One watt equals one joule per second (W = J / s). A person climbing stairs does work at a rate of about 200 W. In electrical applications, one watt equals one volt times one ampere (W = V · A). Incandescent light bulbs use electrical energy at a rate of 40 to 150 W.
Force is rarely mentioned in renewable-energy conversations, except in a nonscientific sense: "The high price of gasoline is forcing me to walk to work." Still, force is an important concept. Physicists have identified four fundamental forces or interactions: The electromagnetic force acts between electric charges, the gravitational force acts between masses and the strong and weak forces hold together atomic nuclei. The push and pull of these forces manifest as energy. For example, the electromagnetic force pulls electrons through a conductor, creating electric current. Gravity pulls water through the turbines at a hydroelectric plant.
The SI unit of force is the newton (N), in honor of English physicist Sir Isaac Newton (1643 - 1727). Newton, the person, is felt by many to have had the greatest impact on the history of science, beating out even Albert Einstein. Newton, the unit, is the force that accelerates a one kilogram mass at the rate of one meter per second squared (N = kg · m / s2). The force of Earth's gravity on a 70 kg (154 lb) human is about 686 newtons.
[pagebreak:Mechanical Energy: Foot-Pounds & Horsepower]
Of all the forms of energy, mechanical energy is probably the easiest to understand-just try lifting a heavy suitcase. Thus the traditional unit of mechanical energy is the foot-pound (ft-lb), the amount of work required to move a one pound object through a distance of one foot. One foot-pound equals about 1.36 J. The metric analogy to the foot-pound is the newton meter (N·m). One newton meter equals one joule.