Math, asked by jmsuresh, 1 month ago

Side AB of a cyclic quadrilateral ABCD is produced to a point E. if angle ADC = 120°, value of angle CBE is

Attachments:

Answers

Answered by MoodyCloud
154

Answer:

∠CBE is 60°.

Step-by-step explanation:

Given :

  • ABCD is a cyclic quadrilateral.
  • ∠ADC is 120°.

To find :

  • Measure of angle ∠CBE.

Solution :

Cyclic quadrilateral are those quadrilateral whose all vertices of quadrilateral lies of circumference of circle.

We know,

✿ Sum of opposite sides of the cyclic quadrilateral are equal to 180°.

So,

 \leadsto ∠CBA + ∠ADC = 180°

 \leadsto ∠CBA + 120° = 180°

 \leadsto ∠CBA = 180° - 120°

 \leadsto CBA = 60°

Now,

We also know,

✿ Sum of all angles forms on straight line is equal to 180° we can say linear pair.

So,

 \leadsto ∠CBA + ∠CBE = 180°

 \leadsto 60° + ∠CBE = 180°

 \leadsto ∠CBE = 180° - 60°

 \leadsto CBE = 120°

Thus,

Measure of CBE is 120°.

Answered by Anonymous
141

Given :-

  • ABCD is a cyclic quadrilateral.
  • ∠ADC = 120°

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

To Find :-

  • Find ∠CBE .

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Concept Used :-

✧ Sum of opposite sides of a cyclic quadrilateral is 180°.

✧ Sum of linear Pair is 180°.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Solution :-

First finding angle CBA :

✧ Sum of opposite sides of a cyclic quadrilateral is 180°.Hence,

{:{\longmapsto{\bf{∠CBA +∠ADC = 180°}}}}

{:{\longmapsto{\bf{∠CBA +120 = 180°}}}}

{:{\longmapsto{\bf{∠CBA  = 180° - 120}}}}

{\large{\purple{:{\longmapsto{\underline{\overline{\boxed{\bf{∠CBA = 60°}}}}}}}}}

Now CBE :

✧ Sum of linear Pair is 180°.

{:{\longmapsto{\bf{∠CBA +∠CBE = 180°}}}}

{:{\longmapsto{\bf{60 +∠CBE = 180°}}}}

{:{\longmapsto{\bf{∠CBE = 180° - 60}}}}

{\large{\purple{:{\longmapsto{\underline{\overline{\boxed{\bf{∠CBE = 120°}}}}}}}}}

Hence :

{\large{\pink{\mathfrak{\underline{\purple{\underline{\red{\mathfrak{∠CBE = 120°}}}}}}}}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Similar questions