Math, asked by ayuskan8, 9 months ago

side AB of quadrilateral is diameter of its inner circle & angle ADC=140° Then find angle BAC​

Answers

Answered by SarcasticL0ve
45

GivEn:

  • Side AB of quadrilateral is diameter of its inner circle.

  • \sf \angle ADC = 140^\circ

To find:

  • \sf \angle BAC = 140^\circ

SoluTion:

ABCD is a cyclic quadrilateral.

So, As we know that,

In a cyclic quadrilateral the sum of each pair of opposite angles is \sf 180^\circ.

Therefore,

:\implies\sf \angle ADC + \angle ABC = 180^\circ

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 140^\circ + \angle ABC = 180^\circ

⠀⠀⠀

:\implies\sf \angle ABC = 180^\circ - 140^\circ

⠀⠀⠀

:\implies\bf \angle ABC = 40^\circ

━━━━━━━━━━━━━━━

AB is diameter of Circle.

Therefore,

:\implies\sf \angle ACB = 90^\circ\;\;\;\;\bigg\lgroup\bf \because\;Angle\;in\; semicircle \bigg\rgroup

⠀⠀⠀

★ Now, In ∆ ABC

⠀⠀⠀

:\implies\sf \angle ABC + \angle ACB + \angle BAC = 180^\circ\;\;\;\;\bigg\lgroup\bf \because\;Angle\;sum\; property\;of\; Triangle \bigg\rgroup

⠀⠀⠀

:\implies\sf 40^\circ + 90^\circ + \angle BAC  = 180^\circ

⠀⠀⠀

:\implies\sf 130^\circ + \angle BAC = 180^\circ

⠀⠀⠀

:\implies\sf \angle BAC = 180^\circ - 130^\circ

⠀⠀⠀

:\implies{\underline{\boxed{\sf{\pink{\angle BAC = 50^\circ}}}}}\;\bigstar

⠀⠀⠀

\therefore\;\sf \underline{Hence,\;\angle BAC\:is\; \bf{50^\circ.}}

Attachments:
Answered by Anonymous
4

Answer :

\Large\bold{\underline{\mathtt{\pink{Given:}}}}

» Side AB of quadrilateral is diameter of its inner circle .

» \sf \angle ADC\:=\:140°

\Large\bold{\underline{\mathtt{\pink{To\:Find:}}}}

» \sf \angle BAC

\Large\bold{\underline{\mathtt{\pink{Sølution:}}}}

» \sf \angle ACB\:=\:90° (angle in a semicircle)

Now , In cyclic quadrilateral ABCD ,

• The sum of opposite angles is 180° .

\sf \angle ADC\:+\: \angle ABC\:=\:180°

\sf 140°\:+\: \angle ABC\:=\:180°

\sf \angle ABC\:=\:180°\:-\:140°

\large\bold{\boxed{\bf{\red{ \angle ABC\:=\:40°}}}}

Now , Angle Sum Property of Triangle is 180° .

\sf \angle BCA\:+\: \angle ABC\:+\: \angle BAC\:=\:180°

\sf 90°\:+\: 40°\:+\: \angle BAC\:=\:180°

\sf 130°\:+\: \angle BAC\:=\:180°

\sf \angle BAC\:=\:180°\:-\:130°

\large\bold{\boxed{\bf{\red{ \angle BAC\:=\:50°}}}}

• For figure , refer to the attachment .

_________________________

Attachments:
Similar questions