side of a triangle are in the ratio of 12:17:25 and its perimeter is 540 cm what will be the area
Answers
Given, sides of triangle are in the ratio 12 : 17 : 25
Let the constant be x
Let the sides in the ratio be 12x, 17x and 25x
Given, perimeter is 540cm
According to the question,
12x + 17x + 25x = 540
➾ 54x = 540
➾ x = 10
∴ 1st side of traingle ➾ 12x
➾ 12 × 10
➾
∴ 2nd side of triangle ➾ 17x
➾ 17 × 10
➾
∴ 3rd side of triangle ➾ 25x
➾ 25 × 10
➾
Semiperimeter = = 270cm
Now, by using Heron's formula, we will find out the area of the triangle
√s(s - a) (s - b) (s - c)
➾ √270(270 - 120) (270 - 170) (270 - 250)
➾ √270(150) (100) (20)
➾ 9000cm²
Solution :
Let sides be a = 12x cm , b = 17x cm and c = 25x cm , Where x is any number
We have given ,
Perimeter = 540 cm
⇒ a + b = c = 540
⇒ 12x + 17x + 25x = 540
⇒ 29x + 25x = 540
⇒ 54x = 540
⇒ x = 540/54
⇒ x = 10
Substitute the value of x
12x
⇒ 12 × 10
⇒ 120 cm
17x
⇒ 17 × 10
⇒ 170 cm
25x
⇒ 25 × 10
⇒ 250 cm
Finding area of triangle
Area of triangle =
Semi - perimeter (S) = Perimeter/2
⇒ 540/2
⇒ 270 cm
Putting the values in the above formula
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
Therefore , the area of the triangle is 9000 cm^2