Math, asked by khan3997, 1 year ago

side of a triangle are in the ratio of 12:17:25 and its perimeter is 540 cm what will be the area

Answers

Answered by BrainlyPrincess
13

Given, sides of triangle are in the ratio 12 : 17 : 25



Let the constant be x



Let the sides in the ratio be 12x, 17x and 25x



Given, perimeter is 540cm



According to the question,



12x + 17x + 25x = 540



➾ 54x = 540



➾ x = 10



∴ 1st side of traingle ➾ 12x



➾ 12 × 10



\green{\boxed{\green{\boxed{\red{\textsf{120\:cm}}}}}}



∴ 2nd side of triangle ➾ 17x



➾ 17 × 10



\green{\boxed{\green{\boxed{\red{\textsf{170\:cm}}}}}}



∴ 3rd side of triangle ➾ 25x



➾ 25 × 10



\green{\boxed{\green{\boxed{\red{\textsf{250\:cm}}}}}}



Semiperimeter = \dfrac{540}{2} = 270cm



Now, by using Heron's formula, we will find out the area of the triangle



√s(s - a) (s - b) (s - c)



➾ √270(270 - 120) (270 - 170) (270 - 250)



➾ √270(150) (100) (20)



9000cm²

Answered by FuturePoet
13

Solution :


Let sides be a = 12x cm , b = 17x cm and c = 25x cm , Where x is  any number

We have given ,

Perimeter = 540 cm

⇒ a + b = c = 540

⇒ 12x + 17x + 25x = 540

⇒ 29x + 25x = 540

⇒ 54x = 540

⇒ x = 540/54

⇒ x = 10


Substitute the value of x

12x

⇒ 12 × 10

⇒ 120 cm

17x

⇒ 17 × 10

⇒ 170 cm

25x

⇒ 25 × 10

⇒ 250 cm


Finding area of triangle

Area of triangle = \sqrt{s(s-a) (s-b) (s-c) }

Semi - perimeter (S) = Perimeter/2

⇒ 540/2

⇒ 270 cm


Putting the values in the above formula

\sqrt{270 (270-120) (270-170) (270-250)}

\sqrt{270 * 150 * 100 * 20}

\sqrt{(27 * 15 *12) * (10)^5}

\sqrt{(27 * 3) * (10)^6}

\sqrt{81 * (10)^6}

\sqrt{81} * \sqrt{(10)^6}

\sqrt{(9) * (10^3)}

9000 cm^2


Therefore , the area of the triangle is 9000 cm^2

Similar questions