Math, asked by mohdmonis56665, 1 year ago

Side of the right angled triangle are 5x,(2x-1)cm and area of triangle is 60 cm^2 find the value of x

Answers

Answered by ABHINAVrAI
0

Answer:


Step-by-step explanation:

Given that sides of a right-angled triangle are 5x and (3x - 1)cm.


Given that Area of the triangle = 60cm^2.


We know that Area of the triangle = 1/2 * b * h


                             60 = 1/2 * 5x * (3x - 1)


                            5x(3x - 1) = 60 * 2


                            5x(3x - 1) = 120


                            x(3x - 1) = 120/5


                             3x^2 - x = 24


                             3x^2 - x - 24 = 0


                             3x^2 + 8x - 9x - 24 = 0


                             x(3x + 8) - 3(3x + 8)


                             (x - 3)(3x + 8)


                             x = 3 (or) x = -3/8.



x value should not be -ve.Therefore the value of x = 3.


Therefore the sides of a right-angled triangle = 


5x = 5 * 3 = 15cm

(3x - 1) = (3 * 3 - 1)

= 9 - 1

= 8cm

By Pythagoras theorem, we know that 


h^2 = 15^2 + 8^2

= 225 + 64

= 289

h =  \sqrt{289}

  = 17.

Therefore the hypotenuse = 17cm.

Therefore the sides of the triangle are 8cm,15cm, and 17cm.


Hope this helps!



Similar questions