Math, asked by shivamtiwari56799, 5 months ago

side of the triangle are in the ratio of 12:17:25 and its parameter is 540 cm find its area​

Answers

Answered by HA7SH
130

Step-by-step explanation:

______________________________

\bf{\bigstar} \text{\Large\underline{\red{Question:-}}}

:\Longrightarrow ● Side of the triangle are in the ratio of 12 : 17 : 25 and its perimeter is 540cm. Find its area.

\bf{\bigstar} \text{\Large\underline{\orange{To\ find:-}}}

:\Longrightarrow ● We have to find the area of the triangle.

\bf{\bigstar} \text{\Large\underline{\green{Given:-}}}

:\Longrightarrow ● Ratio of the sides of the triangle = 12 : 17 : 25.

:\Longrightarrow ● Perimeter of the triangle = 540cm.

\bf{\bigstar} \text{\Large\underline{\purple{Solution:-}}}

:\Longrightarrow  \mathsf{Let's\ x\ be\ the\ common\ ratio.}

\therefore  \mathsf{So,\ sides\ of\ triangle\ will\ be\ :\ 12x,\ 17x,\ and\ 25x.}

:\Longrightarrow  \mathsf{Perimeter\ =\ 540cm.}

:\Longrightarrow  \mathsf{12x\ +\ 17x\ +\ 25x\ =\ 540cm}

:\Longrightarrow  \mathsf{54x\ =\ 540cm}

:\Longrightarrow  \mathsf{x\ =\ \dfrac{540}{54}}

:\Longrightarrow  \mathsf{x\ =\ 10cm} \red{\bigstar}

:\Longrightarrow  \mathsf{●\ So,\ the\ sides\ of\ the\ triangle:-}

:\Longrightarrow  \mathsf{a\ =\ 12x\ =\ 12\ ×\ 10\ =\ 120cm.}

:\Longrightarrow  \mathsf{b\ =\ 17x\ =\ 17\ ×\ 10\ =\ 170cm.}

:\Longrightarrow  \mathsf{c\ =\ 25x\ =\ 25\ ×\ 10\ =\ 250cm.}

:\Longrightarrow  \mathsf{2S\ =\ 540}

:\Longrightarrow  \mathsf{S\ =\ \dfrac{540}{2}}

:\Longrightarrow  \mathsf{S\ =\ 270cm.} \green{\bigstar}

\bf{\bigstar} \text{\large\underline{\blue{By\ using\ herons\ formula:-}}}

:\Longrightarrow  \mathsf{Area\ =\ \sqrt{s(s-a)(s-b)(s-c)}}

:\Longrightarrow  \mathsf{=\ \sqrt{270(270-120)(270-170)(270-250)}}

:\Longrightarrow  \mathsf{=\ \sqrt{270×150×100×20}}

:\Longrightarrow  \mathsf\pink{9000cm².} \red{\bigstar}

\therefore  \fbox{Hence,\ the\ area\ of\ the\ triangle\ is\ 9000cm².}

______________________________

Similar questions