Math, asked by monighy05, 1 month ago

side of triangle are in the ratio 10:19:25.perimeter is 540.find area​

Answers

Answered by omkard1000
0

Answer:

Step-by-step explanation:

solution :

perimeter = 540 units

ratio = 10:19:25 = 10x:19x:25x

sum of ratios = 10x + 19x + 25x = 540

54x = 540

∴ x = 540 / 54 = 10

side 1 = 10x = 10 * 10 = 100units

side 2 = 19x = 19 * 10 = 190 units

side 3 = 25x = 25 * 10 = 250 units

by using heron's formula

semi perimeter(s)  = perimeter /2 = 540/2 = 270

area = \sqrt{s(s-a)(s-b)(s-c)}

       = \sqrt{270(270-100)(270-190)(270-250)\\}

      = \sqrt{270(170)(80)(20)}

      = \sqrt{5*2*3*3*3*5*2*2*2*2*2*5*2*2}

      =240\sqrt{15}   units^{2}

hope it helps :)

Answered by sandeeprkpsk
0

Answer:

Perimeter=10x+19x+25x

54x

54x=540

x=10

Sides are 10*10,10*19,10*25

100,190,250

Area

A =  \sqrt{s(s - a)(s - b)(s - c)}  \\ where \\ s =  \frac{a + b + c}{2}

s=(100+190+250)/2

s=540/2

s=270

A=√{(270)(270-100)(270-190)(270-250)}

=√(270)(170)(80)(20)

=8570

Similar questions