Sides ab,ac and median ad of a triangle are respectively proportinal to sides pq,pr and median pm of another triangle pqr. Show that tria
Answers
Median divides the opposite side.
∴
Given that,
In ΔABD and ΔPQM,
(Proved above)
∴ ΔABD ∼ ΔPQM (By SSS similarity criterion)
⇒ ∠ABD = ∠PQM (Corresponding angles of similar triangles)
In ΔABC and ΔPQR,
∠ABD = ∠PQM (Proved above)
∴ ΔABC ∼ ΔPQR (By SAS similarity criterion)
Answer:
Given two triangles. ΔABC and ΔPQR in which AB, BC and median AD of ΔABC are proportional to sides PQ, QR and median PM of ΔPQR
AB/PQ = BC/QR = AD/PM
To Prove: ΔABC ~ ΔPQR
Proof: AB/PQ = BC/QR = AD/PM
AB/PQ = BC/QR = AD/PM (D is the mid-point of BC. M is the mid point of QR)
ΔABD ~ ΔPQM [SSS similarity criterion]
Therefore, ∠ABD = ∠PQM [Corresponding angles of two similar triangles are equal]
∠ABC = ∠PQR
In ΔABC and ΔPQR
AB/PQ = BC/QR ———(i)
∠ABC = ∠PQR ——-(ii)
From above equation (i) and (ii), we get
ΔABC ~ ΔPQR [By SAS similarity criterion]
Hence Proved
HOPE IT HELPS U