Sides AB BC AND CA OF TRIANGLE ABC TOUCH THE CIRCLE WITH CENTRE O AND RADIUS r AT P Q AND R RESPECTIVELY PROVE THAT AREA OF TRIANGLE ABC IS HALF THE PERIMETER OF TRIANGLE ABC INTOr
Answers
Answered by
1
Given: ΔABC with circle inscribed within it. P, Q, R the points of contact for tangents AB, BC, & CA. Inradius is r. Semiperimeter is s.
RTP: ar(ΔABC) = sr
Proof: AP=AR, BP=BQ, & CQ=CR due to tangent theorem. Let AP=AR=x, BP=BQ=y, & CQ=CR=z.
Angles at P, Q, & R, are 90° according to tangent theorem.
So, ar(ΔABC) = ar(ΔAPO)+ar(ΔARO)+ar(ΔBPO)+ar(ΔBQO)+ar(ΔCRO)+ar(ΔCQO)
So ar(ΔABC) = 1/2(rx) + 1/2(rx) + 1/2(rz) + 1/2(rz) + 1/2(ry) + 1/2(ry)
So ar(ΔABC) = rx + rz + ry = r(x+y+z)
Semiperimeter = 1/2(AB + BC + CA) = 1/2(x + z + z + y + x + y) = 1/2(2x + 2y + 2z) = x + y + z
Thus, ar(Δ) = rs
Similar questions