Math, asked by savithasavithasudhak, 6 months ago

sides of a right angle triangle are '5x'm (3x-1)m if the area is 60m^²
find the hypotnues.. ​

Answers

Answered by Anonymous
52

Given :-

  • Sides of a right trianlge = 5xm and (3x- 1)m

  • Area of right angled trianlge = 60m²

To find :-

  • Hypotenuse of right angled trianlge

Solution :-

  • As we know that

→ Area of trianlge = ½ × base × height

  • Base = 5xm
  • Height = (3x - 1)m

→ 60 = ½ × 5x × (3x - 1)

→ 60 × 2 = 5x(3x - 1)

→ 120 = 15x² - 5x

→ 15x² - 5x - 120 = 0

  • Take 5 as a common

→ 5(3x² - x - 24) = 0

→ 3x² - x - 24 = 0

→ 3x² - 9x + 8x - 24 = 0

→ 3x(x - 3) + 8(x - 3) = 0

→ (x - 3)(3x + 8) = 0

  • Either

→ x - 3 = 0

→ x = 3

  • Or

→ 3x + 8 = 0

→ x = - 8/3

Note :

  • Length never in negative

________________________________

° Base = 5x = 15m

° Height = 3x - 1 = 3 × 3 - 1 = 8m

  • According to Pythagoras theorem

(hypotenuse)² = (base)² + (perpendicular)²

→ (h)² = (b)² + (p)²

→ h² = (15)² + (8)²

→ h² = 225 + 64

→ h² = 289

→ h = √289

→ h = 17m

° Hypotenuse of right angled trianlge = 17m

________________________________

Answered by MysteriousLadki
36

 \huge{ \boxed{ \sf{ \purple{Question?}}}}

Sides of a right angle triangle are '5x'm (3x-1)m if the area is 60m² find the hypotenues.

 \huge{ \boxed{ \sf{ \orange{Answer:- }}}}

Hypotenues of triangle is 17m.

 \huge{ \boxed{ \sf{ {Explanation:- }}}}

Given:-

  • Sides of a right angle triangle are '5x'm (3x-1)m.
  • Area is 60m²

To Find:-

  • Find the hypotenues

Finding it:-

  • Formula used:-

{ \bigstar{\sf{ Area \:  of  \: triangle =  \frac{1}{2}   \times base \times height}}}

  • Base- 5x m
  • Height- 3x-1 m
  • Area- 60m²

  • So now let's solve it..!

{ \implies{\sf{ 60=  \frac{1}{2}   \times 5x \times 3x - 1}}}

{ \implies{\sf{ 60 \times 2=  5x \times 3x - 1}}}

{ \implies{\sf{ 120=  {15x}^{2}  - 5x}}}

{ \implies{\sf{  {15x}^{2}  - 5x - 120 = 0}}}

{ \implies{\sf{5 ({3x}^{2}  - x - 24)= 0}}}

{ \implies{\sf{ ({3x}^{2}  - x - 24)= 0}}}

{ \implies{\sf{  x - 3 \times 3x + 8 = 0}}}

  • Here, there will be 2 answers-

{ \implies{\sf{  x - 3 = 0}}}

{ \implies{\sf{  x  = 3}}}

  • Second answers-

{ \implies{\sf{  3x  + 8 = 0}}}

{ \implies{\sf{  3x   =  - 8}}}

{ \implies{\sf{  x   = -  \frac{ 8}{3}  }}}

  • Here always remember that lenght can never be a negative value. So the second answer will not be applicable.

 \implies \sf{base = 5x = 15m}

 \implies \sf{height = 3x - 1=3 \times 3 - 1 = 8m}

Now by using the Pythagoras theorem:-

 \implies \sf Hypotenues² = Perpendicular² +  Base² </u></p><p><u>[tex] \implies \sf Hypotenues² = Perpendicular² +  Base²

 \implies \sf  {h}^{2}  =  {p}^{2}  +  {b}^{2}

 \implies \sf  {h}^{2}  =  {15}^{2}  +  {8}^{2}

 \implies \sf  {h}^{2}  =  {225}+  {64}

 \implies \sf  {h}^{2}  =  289

 \implies \sf  {h}  =   \sqrt{289}

 \implies \sf  {h}  =   17m

So, the hypotenues of triangle is 17m.

Note.!!

  • Full formula not visible?
  • Side the answer to see the full format.
  • Or see in web- Brainly.in

___________________________

Similar questions