Math, asked by minaxijpatel7171, 4 months ago

sides of a triangle are in the ratio 12:17:25 and its perimeter is 40 cm. Find its area​

Answers

Answered by rushitha2244
1

Answer:

Let x be common ratio

∴ Sides of triangle will be: 12x,17x and 25x

⇒Perimeter =540 cm(given)

⇒12x+17x+25x=540 cm, 

⇒54x=540 cm

⇒x=10 cm

∴ Sides of triangle: a=120,b=170,c=250 cms

⇒2S=540

⇒S=270 cm

A=s(s−a)(s−b)(s−c)

    =270(270−120)(270−170)(270−250)  cm2

    =270×150×100×20 cm2

A=9000 cm2

Answered by madamx914
0

Answer:

9000cm^2

Step-by-step explanation:

Let X be Common in ratio.

  • So,Sides of triangle will be 12x, 17x and 25x.

Given:-

  • Perimeter =540cm

=12x+17x+25x = 540 cm

= 54x= 540cm

= X= 10cm

Therefore,sides of triangle a=120cm , b= 170cm and c= 250cm

=2S = 540cm

= S= 270cm

a =  \sqrt{s(s - a)(s - b)(s - c)}

Similar questions