Math, asked by Anonymous, 19 days ago

Sides of a triangle are in the ratio 12:17:25 and its perimeter is 540 cm. Find its Area .​

Answers

Answered by StarFighter
14

Answer:

Given :-

  • The sides of a triangle are in the ratio of 12 : 17 : 25 and its perimeter is 540 cm.

To Find :-

  • What is the area.

Formula Used :-

\clubsuit Area Of Triangle by using Heron's formula :

\footnotesize \bigstar \: \: \sf\boxed{\bold{\pink{Area_{+Triangle)} =\: \sqrt{s(s - a)(s - b)(s - c)}}}}\: \: \: \bigstar\\

where,

  • s = Semi-perimeter of a triangle
  • a = First Side Of Triangle
  • b = Second Side Of Triangle
  • c = Third Side Of Triangle

Solution :-

Let,

\mapsto \bf First\: Side_{(Triangle)} =\: 12x

\mapsto \bf Second\: Side_{(Triangle)} =\: 17x

\mapsto \bf Third\: Side_{(Triangle)} =\: 25x

As we know that :

\footnotesize \bigstar \: \: \sf\boxed{\bold{\pink{Perimeter_{(Triangle)} =\: Sum\: of\: all\: sides}}}\: \: \: \bigstar\\

According to the question by using the formula we get,

\implies \bf Perimeter_{(Triangle)} =\: a + b + c\\

\implies \sf 12x + 17x + 25x =\: 540

\implies \sf 29x + 25x =\: 540

\implies \sf 54x =\: 540

\implies \sf x =\: \dfrac{\cancel{540}}{\cancel{54}}

\implies \sf\bold{\blue{x =\: 10\: cm}}

Hence, the required sides of a triangle are :

First Side Of Triangle :

➳ First Side Of Triangle = 12x

➳ First Side Of Triangle = 12 × 10

First Side Of Triangle = 120 cm

Second Side Of Triangle :

➳ Second Side Of Triangle = 17x

➳ Second Side Of Triangle = 17 × 10

Second Side Of Triangle = 170 cm

Third Side Of Triangle :-

➳ Third Side Of Triangle = 25x

➳ Third Side Of Triangle = 25 × 10

Third Side Of Triangle = 250 cm

Now, we have to find the semi-perimeter of a triangle :

Given :

  • First Side (a) = 120 cm
  • Second Side (b) = 170 cm
  • Third Side (c) = 250 cm

As we know that :

\footnotesize \bigstar \: \: \sf\boxed{\bold{\pink{Semi-Perimeter_{(Triangle)} =\: \dfrac{Sum\: of\: all\: sides}{2}}}}\: \: \: \bigstar\\

According to the question by using the formula we get,

\implies \bf Semi-Perimeter =\: \dfrac{a + b + c}{2}\\

\implies \sf Semi-Perimeter =\: \dfrac{120 + 170 + 250}{2}\\

\implies \sf Semi-Perimeter =\: \dfrac{\cancel{540}}{\cancel{2}}

\implies \sf\bold{\purple{Semi-Perimeter =\: 270\: cm}}\\

Now, we have to find the area of a triangle :

Given :

  • Semi-Perimeter (s) = 270 cm
  • First Side (a) = 120 cm
  • Second Side (b) = 170 cm
  • Third Side (c) = 250 cm

According to the question by using the Heron's formula we get,

\implies \bf Area_{(Triangle)} =\: \sqrt{s(s - a)(s - b)(s - c)}\\

\implies \sf Area_{(Triangle)} =\: \sqrt{270(270 - 120)(270 - 170)(270 - 250)}\\

\implies \sf Area_{(Triangle)} =\: \sqrt{270(150)(100)(20)}\\

\implies \sf Area_{(Triangle)} =\: \sqrt{270(300000)}\\

\implies \sf Area_{(Triangle)} =\: \sqrt{270 \times 300000}\\

\implies \sf Area_{(Triangle)} =\: \sqrt{81000000}\\

\implies \sf\bold{\red{Area_{(Triangle)} =\: 9000\: cm^2}}\\

\therefore The area of a triangle is 9000 cm² .

Answered by Teluguwala
7

Given :-

Sides of a triangle are in the ratio 12:17:25 and its perimeter is 540 cm.

 \:

To Find :-

Area of the triange

 \:

Used Formulas :-

\red⇝ \: \bf Perimeter _{(Triange)}  = a +b+c

 \displaystyle \red⇝ \: \bf Area _{(Triange)}  =  \sqrt{s(s - a)(s - b)(s - c) \: }

 \:

Solution :-

Sides of a Δle are in ratio = 12:17:25

Those perimeter is 540cm

 \displaystyle\bf ⟼  \:  Semi-perimeter(s) =  \cancel \frac{540}{2}  = 270 cm

 \purple⟶ \: \bf Perimeter _{(Triange)}  = a +b+c

 \purple ⟶ \bf \: 540 = 12x+17x+25x

\purple ⟶ \bf \: 540 = 54x

 \displaystyle\purple ⟶ \bf \:   \cancel\frac{540}{54}  = x

\purple ⟶ \:  \red{ \boxed{ \bf x= 10}}

∴ 12x = 10×12 = 120

∴ 17x = 10×17 = 170

25x = 10×25 = 250

The sides of the triange are 120, 170 and 250

 \:

Proof :-

 \purple ⟶ \bf \: 540 = 120+170+250

\purple ⟶ \bf \: 540 = 540

Hence, proved

 \:

By using Heron’s formula,

 \bf \green⟶ \: Area_{(Triangle)}=  \sqrt{s(s - a)(s - b)(s - c) \: }

\bf \green⟶ \: Area_{(Triangle)}= \sqrt{270(270 - 120)(270 - 170)(270 - 250)}

\bf \green⟶ \: Area_{(Triangle)}= \sqrt{270(270 - 120)(270 - 170)(270 - 250)}  \:

\bf \green⟶ \: Area_{(Triangle)} =  \sqrt{270 × 150 × 100 × 20}

\bf \green⟶ \: Area_{(Triangle)} =  \sqrt{81000000}

\bf \green⟶ \: Area_{(Triangle)} =   \red{9000 cm^{2} }

Similar questions