Math, asked by katiekhiangte6665, 11 months ago

Sides of a triangle are in the ratio 12:17:25 and its perimeter is 540cm. find its area.

Answers

Answered by Himanshu4264
0

perimeter of triangle =

 540 \div 3 = 180

Let 12 be a, 17 be b, 25 be c

According to Heron's Formula,

semi-perimeter =

a + b + c \div 2 \\  \\ 12 + 17 + 25 = 54 \\ 54 \div 2 = 27

Area of triangle =

 \sqrt{27 \times 15 \times 10 \times 2 }

By Splitting Method

 \sqrt{3 \times 9 \times 2 \times 5 \times 2 \times 1}

3 \times 9 \times 2 \times 5 = 270sq \: cm

It took me a lot of time..

please make it the brainliest answer!

THANKS!❤❤

Answered by Anonymous
13

\huge\tt{\underline{\underline{Solution  :-}}}

Let one side of triangle= 12x

Let 2nd side of triangle= 17x

Let 3rd side of triangle= 25x

\textsf{12x+17x+25x=540\:cm}

\textsf{54x=540cm}

\huge\sf\frac{540}{54}

\textsf{x=10cm}

★a=12x=12×10=120cm

★b=17x=17×10=170cm

★c=25x=25×10=250cm

____________________________

s=\huge\sf\frac{a+b+c}{2}= \huge\sf\frac{540}{2} = 270cm.

______________________________

Area of triangle by using heron's formula:-

\sf\sqrt{s(s-a)(s-b)(s-c)}

\sf\sqrt{270(270-170)(270-170)(270-250)}

\sf\sqrt{270(150)(150)(20)}

\sf\sqrt{81000000}

9000\sf{cm}^{2}

Similar questions